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Preface

The theory of variable structure systems with sliding modes is currently one of the 
most important research topics within the control engineering domain. Moreover, 
recently a number of important applications of the systems primarily in the fi eld of 
power electronics, control of electric drives, robotics and position regulation of sophis-
ticated mechanical systems have also been reported. Therefore, the objective of this 
monograph is to present the most signifi cant latest developments in the theory and 
engineering applications of the sliding mode control and to stimulate further research 
in this fi eld.

The monograph consists of 28 chapters. It begins with six contributions devoted to 
various signifi cant issues in power electronics. In the fi rst chapter, Ben Saad et al. pro-
pose, test and compare sliding mode and fuzzy sliding mode controllers for DC-DC 
converters. In the second chapter, Petkova et al. consider the operation of the single-
phase inverter and single-phase active power fi lter and prove, both in simulations and 
laboratory experiments, the eff ectiveness of sliding mode controllers in these two ap-
plications. Then, Al-Hosani et al. also consider the design of DC-DC buck and boost 
converters. They develop the sliding mode approach which implements – very common 
in industry – proportional integral derivative (PID) controllers. The main idea of that 
chapter may be summarized as enforcing sliding mode such that the output converter 
voltage contains proportional, integral and derivative components with the predefi ned 
coeffi  cients. Chatt ering is then reduced through the use of multiphase power converter 
structure. The proposed design methods are confi rmed by means of computer simula-
tions. In the next chapter, Zhu and Kang consider arc welding/cutt ing power supply 
and propose a “synthetic” sliding mode and PI controller. They propose to use the PI 
controller in the current loop and the sliding mode controller in the voltage loop. The 
results are verifi ed by experiments conducted on a 20 kW arc welding/cutt ing power 
source. They show on one hand good dynamic performance of the system, and on the 
other decreased undesirable voltage overshoot. Another contribution concerned with 
power electronics is the chapter by Ayad et al. which presents sliding mode control of 
fuel cells, supercapacitors and batt ery hybrid sources for vehicle applications. Then, the 
chapter by Susperregui presents and evaluates fi rst-order and  higher-order sensorless 
sliding mode control algorithms, for a doubly-fed induction generator. The algorithms 
not only aim at governing active and reactive power exchange between the doubly-fed 
induction generator stator and the grid, but also ensure the synchronization required 
for smooth connection of the generator stator to the grid. 

Sliding mode systems are a feasible option not only for power converter control but also 
for electric drive regulation. Therefore an important issue of induction motor control is 
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addressed in the next two chapters. The chapter by Cortes-Romero and Sira-Ramirez presents 
a combination of two control loops, one employing a discontinuous sliding mode controller and 
another one based on the combination of generalized proportional integral control and gener-
alized proportional integral disturbance observer. The authors of the chapter demonstrate – by 
experiments performed on an actual induction motor test bed with a voltage controlled brake 
– that the proposed combination results in robust position and tracking control of induction 
motors. In the next chapter, writt en by Reama et al. a new simple and easy to implement adap-
tive sliding mode scheme for speed and fl ux control of induction motor using online estimation 
of the rotor resistance and load torque are proposed. The two chapters on control of induction 
motors are followed by a contribution of Patre and Panchade, which is concerned with a unifi ed 
sliding mode approach to torque, position, current and speed regulation of DC drives. Then the 
next chapter, by Santo et al., presents the design and implementation of a sliding mode position 
controller for a linear switched reluctance actuator devoted primarily for robotic applications. 
The section devoted to the problem of electric drive control ends up with a chapter on friction 
compensation for a mini voice coil motors. The chapter writt en by Lin et al., demonstrates that 
sliding mode control approach may reliably eliminate stick slip oscillations and reduce the 
steady state error. This conclusion is drawn based on experimental results performed on a mini 
voice coil motor mounted on a compact camera module.

The next three chapters are concerned with selected issues in robotics. The fi rst of them, writ-
ten by Becerra and Sagues proposes a robust controller for image-based visual servoing for 
diff erential drive mobile robots. The second one, by Rivera et al., is devoted to the application 
of a higher order, namely super-twisting sliding mode controller for trajectory tracking of an 
under-actuated manipulator and also for induction motors. Then Herman and Kozłowski con-
sider rigid, serial manipulators and present an extensive survey of selected non-adaptive slid-
ing mode controllers expressed in terms of the inertial quasi-velocities. They also point out a 
number of advantages off ered by sliding mode control schemes using inertial quasi-velocities.
The next seven chapters present successful applications of sliding mode control paradigm in 
other areas than power electronics, electric drives and robotics. The section devoted to those 
applications begins with the chapter by Fung and Chang on sliding mode force and motion 
control of three very popular mechanisms, i.e. slider-crank, quick-return and toggle mecha-
nism. Then Tournes et al. propose a higher order sliding mode control scheme for automatic 
docking of space vehicles. The issue of higher order sliding mode control is also considered in 
the chapter, by Suares et al. In that contribution higher order sliding mode is successfully used 
to suppress nonlinear dynamics in physical plants with friction which is inevitable in all me-
chanical systems. Higher order sliding mode approach is further considered in the chapter by 
Salgado-Jiménez et al. on control of remotely operated vehicles which are nowadays indispens-
able in performing the inspection tasks and maintenance of numerous underwater structures, 
common in the oil industry, especially in deep and not easily accessible to humans waters. That 
chapter demonstrates that sliding mode control is a viable option for controlling underwater 
vehicles which operate in a highly dynamic and uncertain environment oft en aff ected by waves 
and strong currents. Another interesting and very well worked out application is described in 
the next chapter authored by Schindele and Aschemann. They propose three types of sliding 
mode controllers (conventional, second-order and proxy) for a linear axis driven by four pneu-
matic muscles and verify performance of these controllers on a laboratory test rig. Then Kim et 
al. present adaptive sliding mode controller of adhesion force between the rail and the wheel 
in railway rolling stocks. The section concerned with various applications of sliding mode con-
trol concludes with the chapter by Wen on optimal fuzzy sliding mode control of biochips and 
biochemical reactions.
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The last section of this monograph presents selected new trends in the theory of sliding 
mode control. It begins with a chapter by Nowacka-Leverton and Bartoszewicz point-
ing out some advantages of sliding mode control systems with time-varying switch-
ing surfaces. Then the chapter by Sato et al. discusses a new variable structure design 
method which results in good transient performance of the controlled system and 
small steady state error. The next chapter by Chen and Tseng is devoted to the att enu-
ation of an important and fairly undesirable eff ect of chatt ering. The authors present a 
new controller design procedure aimed at chatt ering reduction by low-pass fi ltering of 
the control signal. Also the subsequent chapter, writt en by Mihoub et al., considers the 
chatt ering phenomenon. It effi  ciently combines multi-model approach to the reaching 
phase performance improvement with the second order sliding mode controller design 
for discrete time systems. Another signifi cant theoretical issue is considered by Adloo 
et al. Those authors propose sliding mode controller for two dimensional (2-D) systems 
and discuss the switching surface design and the control law derivation. In the penul-
timate chapter of this monograph, Yasser et al. propose to incorporate some elements 
of artifi cial intelligence, namely appropriately trained neural networks, into the sliding 
mode control framework and demonstrate the advantages of this approach. Finally, the 
last chapter of this book – writt en by Nied and de Oliveira – also concentrates on some 
aspects of combining neural networks with sliding mode control, however their goal is 
quite diff erent from that of Yasser et al. Indeed Nied and de Oliveira present a sliding 
mode based algorithm for on-line training of artifi cial neural networks, rather than 
exploiting neural networks in variable structure controller construction.  

In conclusion, the main objective of this book was to present a broad range of well 
worked out, recent application studies as well as theoretical contributions in the fi eld 
of sliding mode control. The editor believes, that thanks to the authors, reviewers and 
the editorial staff  of Intech Open Access Publisher this ambitious objective has been 
successfully accomplished. It is hoped that the result of this joint eff ort will be of true 
interest to the control community working on various aspects of non-linear control sys-
tems, and in particular those working in the variable structure systems community.

Andrzej Bartoszewicz
Institute of Automatic Control, 

Technical University of Łódź
Poland
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Sliding Mode Control and Fuzzy  
Sliding Mode Control for DC-DC Converters 

Kamel Ben Saad, Abdelaziz Sahbani and Mohamed Benrejeb 
Research unit LARA,  

National engineering school of Tunis (ENIT), Tunis, 
Tunisia 

1. Introduction 
Switched mode DC-DC converters are electronic circuits which convert a voltage from one 
level to a higher or lower one. They are considered to be the most advantageous supply 
tools for feeding some electronic systems in comparison with linear power supplies which 
are simple and have a low cost. However, they are inefficient as they convert the dropped 
voltage into heat dissipation. The switched-mode DC-DC converters are more and more 
used in some electronic devices such as DC-drive systems, electric traction, electric vehicles, 
machine tools, distributed power supply systems and embedded systems to extend battery 
life by minimizing power consumption (Rashid, 2001). 
There are several topologies of DC-DC converters which can be classified into non-isolated 
and isolated topologies. The principle non-isolated structures of the DC-DC converters are 
the Buck, the Buck Boost, the Boost and the Cuk converters. The isolated topologies are used 
in applications where isolation is necessary between the input and the load. The isolation is 
insured by the use of an isolating transformer. 
The DC-DC converters are designed to work in open-loop mode. However, these kinds of 
converters are nonlinear. This nonlinearity is due to the switch and the converter component 
characteristics. 
For some applications, the DC-DC converters must provide a regulated output voltage with 
low ripple rate. In addition, the converter must be robust against load or input voltage 
variations and converter parametric uncertainties. Thus, for such case the regulation of the 
output voltage must be performed in a closed loop control mode. Proportional Integral and 
hysteretic control are the most used closed loop control solutions of DC-DC converters. This 
can be explained by the fact that these control techniques are not complicated and can be 
easily implemented on electronic circuit devises. 
Nowadays, the control systems such as microcontrollers and programmable logic devises 
are sophisticated and allow the implementation of complex and time consuming control 
techniques.  
The control theory provides several control solutions which can be classified into 
conventional and non-conventional controls. Many conventional controls, such as the PID 
control, were applied to DC-DC converters. The design of the linear controller is based on 
the linearized converter model around an equilibrium point near which the controller gives 
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good results. However, for some cases this control approach is not so efficient (Tse & 
Adams, 1992; Ahmed et al, 2003). 
Sliding Mode Control (SMC) is a nonlinear control technique derived from variable 
structure control system theory and developed by Vladim UTKIN. Such control solution has 
several advantages such as simple implementation, robustness and good dynamical 
response. Moreover, such control complies with the nonlinear characteristic of the switch 
mode power supplies (Nguyen & Lee, 1996; Tan et al, 2005). Although, the drawback of 
SMC is the chattering phenomena. To overcome the chattering problem one solution 
consists into extending SMC to a Fuzzy Sliding Mode Control (FSMC), (Alouani, 1995). 
Fuzzy Logic Control is a non-conventional and robust control law. It is suitable for 
nonlinear or complex systems characterized by parametric fluctuation or uncertainties 
(Kandel & Gideon, 1993; Passino, 1998). The advantage of the FSMC is that it is not directly 
related to a mathematical model of the controlled systems as the SMC. 
This chapter aims to compare SMC and FSMC of DC-DC converters. The average models of 
Buck, Boost and Buck Boost converters are presented in section 2. Then in section 3, some 
classical sliding mode controls are presented and tested by simulations for the case of Buck 
and Buck Boost converters. In order to improve the DC-DC converters robustness against 
load and input voltage variations and to overcome the chattering problem, two approaches 
of FSMC are presented in section 4.  

2. DC-DC converters modelling 
The switching DC-DC converters are hybrid dynamical systems characterized by both 
continuous and discrete dynamic behaviour.  
In the following, we present only a general modelling approach of DC-DC converters by 
application of the state space averaging technique of the Buck, Boost and Buck-Boost 
converters for the case of a continuous conduction mode.  
Let us consider a switching converter which has two working topologies during a period T.  
When the switches are closed, the converter model is linear. The state-space equations of the 
circuit can be written and noted as follows (Middlebrook & Cuk, 1976): 

 1 1

1 1

x = A x+ B u
y = C x+ E u
⎧
⎨
⎩

 (1) 

When the switches are opened, the converter can be modelled by another linear state-space 
representation written and noted as follows: 

 2 2

2 2

x = A x+ B u
y = C x+ E u
⎧
⎨
⎩

 (2) 

From the equation (1) and (2) we can determine the averaged model given by equation (3) 
for an entire switching cycle T. 

 x = A(d)x+ B(d)u
y = C( )x+ E( )ud d
⎧⎪
⎨
⎪⎩

 (3) 

where the matrices ( )A d , ( )B d , ( )C d  and ( )E d  are defined as follows: 
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1 2

1 2

1 2

1 2

( ) (1 )
( ) (1 )
( ) (1 )
( ) (1 )

A d dA d A
B d dB d B
C d C d C
E d dE d E

= + −⎧
⎪ = + −⎪
⎨ = + −⎪
⎪ = + −⎩

 (4) 

and x , y  and u  are respectively the average of x, y and u during the switching period T. 
Let us consider the Buck, Boost and Buck-Boost converters presented by Fig. 1, Fig. 2 and 
Fig. 3 respectively. The state space representation can be expressed for these converters as 
follows : 

 
( ) ( )
( )o

x A d x B d u
v C d x
⎧ = +⎪
⎨

=⎪⎩
 (5) 

where  

L

o

ix
v
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

( ) (0 1)C d =   

inu V=  
d 1=  (Switch ON)  
d 0=  (Switch OFF) 
However the matrix ( )A d  and ( )B d  depend on the kind of converter. Table 1 gives the 
expression of these matrixes for the considered converters. 
 

Buck converter Boost converter Buck Boost converter 
10

( )
1 1

LA d

C RC

⎛ ⎞−⎜ ⎟
⎜ ⎟=
⎜ ⎟−⎜ ⎟
⎝ ⎠

 

( )
0

d
B d L

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

1 d0
LA(d)

1 d 1
C RC

−⎛ ⎞−⎜ ⎟
⎜ ⎟=

−⎜ ⎟−⎜ ⎟
⎝ ⎠

 

1
B(d) L

0

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

10
( )

1 1

d
LA d

d
C RC

−⎛ ⎞
⎜ ⎟
⎜ ⎟=

−⎜ ⎟− −⎜ ⎟
⎝ ⎠

 

( )
0

d
B d L

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

Table 1. Matrix ( )A d  and ( )B d expression for the Buck, Boost and Buck Boost converters 
 

L

D C RVin v0

iL
Sw

 
Fig. 1. Buck converter structure  
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L D

C RVin v0

iL

Sw

 
Fig. 2. Bosst converter structure  

 

L

D

C RVin v0

iL

Sw

 
Fig. 3. Buck-Boost converter structure 

The averaged modelling approach for the switching mode converter leads to an 
approximate non linear models. The linearization of this kind of models around the 
operating point allows the application of conventional control approach such as PID control 
and adaptive control. However, sliding mode control is considered to be the most adequate 
control solution because it complies with the nonlinear behaviour of the switching DC-DC 
converters and it is robust against all the modelling parametric uncertainties. 
 

3. Sliding mode control for DC- DC converters 
3.1 SMC general principle  
SMC is a nonlinear control solution and a variable structure control (VSC) derived from the 
variable structure system theory. It was proposed by Vladim UTKIN in (Utkin, 1977).  
SMC is known to be robust against modelling inaccuracies and system parameters 
fluctuations. It was successfully applied to electric motors, robot manipulators, power 
systems and power converters (Utkin, 1996). In this section, we will present the general 
principle of the SMC and the controller design principle.  
Let us consider the nonlinear system represented by the following state equation: 

 ( , ) ( , ) ( )x f x t g x t u t= +  (6) 

where x is n-dimensional column  state vector, f  and g  are n dimensional continuous 
functions in x , u  and t vector fields, u is the control input. 
For the considered system the control input is composed by two components a 
discontinuous component nu and a continuous one equ  (Slotine & Li, 1991). 

 eq nu u u= +  (7) 
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The continuous component insures the motion of the system on the sliding surface 
whenever the system is on the surface. The equivalent control that maintains the sliding 
mode satisfies the condition  

 0S =  (8) 

Assuming that the matrix ( , )S g x t
x
∂
∂

 is non-singular, the equivalent control maybe calculated 

as: 

 
1

( , ) ( , )eq
S S Su g x t f x t
x t x

−∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (9) 

The equivalent control is only effective when the state trajectory hits the sliding surface. The 
nonlinear control component brings the system states on to the sliding surface. 
The nonlinear control component is discontinuous. It would be of the following general 
form (Slotine & Li, 1991; Bandyopadhyay & Janardhanan, 2005): 

 
0

0
n

u with S
u

u with S

+

−

⎧ >⎪= ⎨
<⎪⎩

 (10) 

In the following SMC, will be applied to a buck and buck-boost converters.  

3.2 SMC for Buck converter  
3.2.1 Proposed SMC principle  
For the Buck converter we consider the following sliding surface S : 

  S ke e= +  (11) 

where k  is the sliding coefficient and e  is the output voltage error defined as follows : 

 0refe V v= −  (12) 

By considering the mathematical model of the Buck converter, the surface can be expressed 
by the following expression (Tan, et al, 2006; Ben Saad et al 2008): 

 1 1   L o refS i k v KV
C RC

+
⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

 (13) 

and its derivative is given by :  

 - 0

2

2 2 2
1 - - in

L

kRC L kRLC R C VS i v u
LCRC R C L

⎛ ⎞− −⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 (14) 

The next step is to design the control input so that the state trajectories are driven and 
attracted toward the sliding surface and then remain sliding on it for all subsequent time. 
The SMC signal u  consists of two components a nonlinear component nu  and an 
equivalent component equ , (Ben Saad et al, 2008). 
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The equivalent control component constitutes a control input which, when exciting the 
system, produces the motion of the system on the sliding surface whenever the system is on 
the surface. The existence of the sliding mode implies that 0S = . So the equivalent control 
may be calculates as: 

 1 2-  oeq Lu i vα α=  (15) 

where   

1
-

in

L kLRC
RCV

α =   

and 
2

2 2 in

L kRLC R C
R CV

α − −
=  

Let us consider the positive definite Lyapunov function V defined as follows: 

 21
2

V S=  (16)  

The time derivative V of V  must be negative definite 0V <  to insure the stability of the 
system and to make the surface S  attractive. Such condition leads to the following 
inequality: 

  - 0in

n

VSS S u
LC

⎛ ⎞= <⎜ ⎟
⎝ ⎠

 (17) 

To satisfy such condition, the nonlinear control component can be defined as follows: 

  ( ) nu sign S=  (18) 

Fig. 4 presents the control diagram of the presented SMC. 
 

 
Fig. 4. SMC for Buck converter   
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3.2.2 Simulation and experimental results  
The SMC is tested by simulation and experimentally using a dSAPCE control board. The test 
bench was built as shown in Fig. 10 and Fig. 11 around: 
- a Buck converter,  
- a computer equipped with a dSPACE DS1104 with its connector panel, 
- a DC voltage power supply, 
- two load resistances. 
 

 
Fig. 5. Photo of the studied Buck converter 

 

 
Fig. 6. Photo of the test bench 

The dSPACE DS1104 controller board is a prototyping system. It is a real time hardware 
platform. It can be programmed with MATLAB/SIMULINK software through a real time 
interface allowing the generation of a real time code. Two ADC input channels of the 
DS1104, characterized by a 16 bits resolution, are used to acquire the Buck converter output 
voltage and the inductance current. The control board generates a digital PWM signal which 
is used to control the switch of the Buck converter. 
The proposed SMC was applied to a Buck converter characterized by the parameters given 
in the table 2.  
 

Parameters Values 
inV  15 V 

C  22 μF 
L  3 mH 
R  10 Ω 

Switching frequency 10 kHz 

Table 2. Studied buck converter parameters 
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Fig. 7. Open loop responses of the buck converter by application of 16% PWM control signal 
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Fig. 8. Application of the SMC to the studied Buck converter ( 5Vref V= )  
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                    (a) Reference voltage 10 V                                      (b) Reference voltage 5V 
 

Fig. 9. Experimental test robustness of the SMC for the variation of the load from 10 Ω to 15 Ω 
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Fig. 7 presents the simulated output voltage by application of a PWM control signal of 16% 
duty cycle. The voltage response corresponds to a second order damped system response 
with an overshoot. Fig. 8 presents the obtained result by application of the proposed SMC to 
the studied controller for a 5 V voltage reference. We can see clearly that the observed 
voltage overshoot obtained on the open-loop response disappeared by application of the 
SMC. 
The SMC is tested experimentally for the case of the load variation. Fig. 9 presents the 
obtained results for the case of the variation of the load resistance from 10 Ω to 15 Ω at 0.05s. 
It is clear that this perturbation is quickly rejected because the output voltage attends the 
reference voltage. The experimental test result for the case of the input voltage variation 
from 30 V to 20V, given in Fig. 10, shows the robustness of the applied SMC. 
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Fig. 10. Experimental output voltage evolution by application of the SMC for the variation of 
the input voltage from 30V to 20V 

3.3 SMC for Buck-Boost converter 
3.3.1 Proposed SMC principle 
As for the Buck Converter, the Buck-Boost converter sliding surface and output voltage 
error are respectively defined by equations (8) and (9).  
k can be chosen so that the outer voltage loop is enough to guarantee a good regulation of 
the output voltage with a near zero steady-state error and low overshoot.  
Without any high frequency, when the system is on the sliding surface, we have 0S = and 

0S = (Hu et al, 2005; El Fadil et al, 2008). 
As the control signal applied to the switch is pulse width modulated, we have only to 
determine the equivalent control component.   
By considering the mathematical model of the DC-DC Boost converter, at the study state the 
variation of the surface can be expressed as: 

 0
0

1
( )eq

L
u vS ke kv k i

C RC
−

= = − = − −  (19) 

and then from equation (20) and by considering the condition  0S =  we have: 
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 0
0

1 eq
L

uvkv i
RC C

−
+ =  (20) 

 

From the state representation (7) we can write the following relation: 

 0 0
1 11( ) ( )eq eq inu u vv k v

RC C L L
− −

− = +  (21) 

 

Then equivalent control component expression: 

 
2

0

0

4 ( )( )
1

2

in in ref

eq

kLv v CRk L v v
Ru

v

+ + − −
= −  (22) 

 

3.3.2 Simulation results 
The proposed SMC was applied by simulation to the studied Buck-Boost converter 
characterized by the parameters given in Table 3. Fig. 11 presents the studied converter 
open-loop voltage and current responses. In Fig. 12 the output voltages evolution obtained 
by application of the SMC are presented for a reference voltages 20refV V= − . So the 
application of the SMC allowed the elimination of the overshoot observed for the open-loop 
response. Fig. 13 presents the control signal. We can notice that it is strongly hatched. This is 
a consequence of the chattering phenomenon.    
 
 

PARAMETERS VALUES 

inV  20 V 

C  22 μF 

L  3 mH 

R  10 Ω 

SWITCHING FREQUENCY 10 kHz 

Table 3. Studied Buck Boost converter parameters 

To test the robustness of the SMC, we consider now the variations of the load resistance and 
the input voltage. Fig. 14 presents the evolution of the output voltage and the current in the 
load for the case of a sudden change of the load resistance from 30Ω to 20Ω. So by the 
application of the SMC, this perturbation was rejected in 10.10-3s and the output voltage 
attends the reference voltage after. Fig. 15 illustrates the sudden variation of the input 
voltage from 15V to 10V at 0.05s. For such case we notice that the output voltage, presented 
by Fig. 16, attends after the rejection of the perturbation the desired value −20V and the 
converter work as boost one. 
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Fig. 11. Output voltage evolution of the Buck-Boost converter obtained by open-loop 
control. 
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Fig. 12. Output vvoltage evolution obtained by application of the SMC 
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Fig. 13. Control signal evolution  
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Fig. 14. Output voltage evolution by application of the SMC for the case of load variation 
from 30Ω to 20Ω 
 

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
5

10

15

20

Time (s)

V
ol

ta
ge

 (V
)

 
Fig. 15. Input voltage variation  
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Fig. 16. Output voltage evolution by application of the SMC for the case of input voltage 
variation from 15 V to 10V 
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In order to overcome the problem of the chattering phenomena, it is possible to apply a high 
order SMC. However, the obtained analytical expression of the control component can be so 
complicated.    
In the following, we will propose to apply a FSMC to the studied converters in order to 
improve the robustness of the SMC and to overcome the chattering problem.  

4. FSMC for DC- DC converters 
As SMC, Fuzzy Logic Control (FLC) is known to be robust. Moreover, it is considered to be 
an alternative to the chattering problem. FLC is an intelligent control complying with 
complex or uncertain systems. Some researchers show that FLC is a general form of variable 
structure control. Thus, some attempts have been made in order to integrate the SMC and 
FLC to a Fuzzy Sliding Mode Control (FSMC). However, the design of a fuzzy sliding mode 
controller for nonlinear system is a difficult problem. There have been quite a lot of 
researches on the combination of sliding mode control with fuzzy logic control techniques 
for improving the robustness and the performances of nonlinear systems with uncertainty 
(Qiao et al, 03). 
We can distinguish two classes of control algorithms for FSMC. The first class is the fuzzy 
boundary layer SMC where the signum function is replaced by a fuzzy map so that the 
control input switch in a smooth manner to the equivalent control component. As 
consequence chattering is reduced. As an example of this kind of control a FSMC proposed 
by PALM is adopted. 
The second class consists of the set of fuzzy control algorithms which approximate the 
input-output map of traditional sliding mode control (Alouani, 1995).  

4.1 Fuzzy boundary layer SMC 
For the first class of FSMC we present in the following the method proposed by PALM in 
(Palm, 1992). 
 

ep 

dsn 

o 

d 

e 

P e ep p( , )ep

e

S
E

0

 
Fig. 17. Distances snd  and  d  
Let us consider a second order system and as an example the sliding surface defined as 
follows (Sahbani et al, 2008): 

 TS EY=  (23) 
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where [ ]E e e=  and [ ]1Y k= . 
with k a constant gain and e  the output system error. 
The distance between the trajectory error and the sliding surface snd is defined as follows: 

 
2

   
1

p p
sn

e ked
k

+
=

+
 (24) 

snd is the normal distance between the point ( , )p pP e e and the sliding surface. Such distance 
is illustrated graphically in Fig. 17 for an arbitrary point ( , )p pP e e . 
Let ( , )p pH e e  be the intersection point of the switching line and its perpendicular passing 
through the point ( , )p pP e e .  

od  is defined as the distance between the point ( , )p pH e e  and the origin O.  
The distance od  is expressed as follows: 

 2 2 o snd E d= −  (25) 

The presented FSMC has as inputs the two distances snd  and od . The output signal is the 
control increment ( )U kΔ  which is used to update the control signal defined as follows: 

 ( ) ( ) ( 1)U k U k U k= Δ + −  (26) 

The control law is equivalent to an integral action allowing a steady state error. 
The presented FSMC is a Mamdani fuzzy inference system composed by a fuzzification 
block, a rule base bloc and a defuzzification block. 
Trapezoidal and triangular membership functions, denoted by N (Negative), Z (Zero) and P 
(Positive), are used for snd . The same shape of membership functions denoted by Z (Zero), 
PS (Positive small ) and PB (Positive Big) are used for od . snd  and od  membership functions 
are presented respectively in Fig. 18 and Fig. 19 in the normalized domain [ ]1 1− for snd  
and [ ]0 1  for od .   
 

 

-1 0.5 0 0.5 1 
0 

1 N Z P 

dsn  
Fig. 18. snd  membership functions  

For the output signal of the proposed FSMC, fives triangular membership functions,  
denoted by NB (Negative Big), NM (Negative Middle), Z (Zero), PM (Positive Middle), PB 
(Positive Big) are used for the output signal dΔ , Fig. 20. The rule base is given by table 4. 
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d0

0 0.2 0.6 0.8 1 
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1 PS Z PB 

 
0.4 

 
Fig. 19. od  membership functions  
 

snd   

  N Z P 

Z PS Z NS 

PS PB PS NB od  

PB PB NS NB 

Table 4. Rule base of the proposed FSMC. 

 

0 0.5-0.5-1 1

Z PS PBNSNB

ΔU  
Fig. 20. UΔ  membership functions 

4.2 Fuzzy Lyapunov function SMC  
The second class of FSMC uses the surface S  and its variation S  to define the changes on 
the control signal. The aim of this kind of FSMC is to insure the Lyapunov stability 
condition 0SS < . 
Let us consider the sliding surface S . The proposed fuzzy sliding mode controller forces the 
derivative of the Lyapunov function to be negative definite. So, the rule base table is 
established to satisfy the inequality (17).  
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Intuitively, suppose that 0S >  and 0S > , the duty cycle must increase. Also, if 0S <  and 
0S <  the duty cycle must decrease. Thus, the surface S  and its variation S  are the inputs of 

the proposed controller. The output signal is the control increment ( )U kΔ which is used to 
update the control law. As for the Fuzzy boundary layer SMC the control signal is defined 
by equation (26). The proposed Fuzzy Sliding Mode Controller is a Sugeno fuzzy controller 
which is a special case of Mamdani fuzzy inference system. Only the antecedent part of the 
Sugeno controller has the “fuzzyness”, the consequent part is a crisp function. In the Sugeno 
fuzzy controller, the output is obtained through weighted average of consequents. 
As the proposed approach have to be implemented in practice, such choice can be motivated 
by the fact that Sugeno fuzzy controller is less time consuming than the Mamdani one  
Trapezoidal and triangular membership functions, denoted by N (Negative), Z (Zero) and P 
(Positive), were used for both the surface and the surface change. They are respectively 
presented in Fig. 21 and Fig. 22 in the normalized domain [ ]1 1− .   
For the output signals, fives normalized singletons denoted by NB (Negative Big), NM 
(Negative Middle), Z (Zero), PM (Positive Middle), PB (Positive Big) are used for the output 
signal UΔ , Fig. 23. 
The normalized control surface of the proposed FSMC, corresponding to the Rule Base 
given in table 5, is presented in Fig. 24. Such surface shows clearly the nonlinear 
characteristic of the proposed fuzzy control law. 
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ZN P
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Fig. 21. Surface S membership functions 
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Fig. 22. Surface change S  membership functions 
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Fig. 23. Output singletons 
 

S   

  N Z P 

P Z PM PB 

Z NM Z PM 

S  

N NB NM Z 

Table 5. Rule base of the proposed FSMC 
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Fig. 24. FSMC control surface 
In the following this second class of FSMC will be applied to the Buck and Buck Boost 
converters. 

4.3 Application of the Fuzzy Lyapunov function SMC to Buck and Buck-Boost 
converters  
The proposed Fuzzy Lyapunov function SMC is applied to the Buck and Buck-Boost 
converter to prove the efficiency of the proposed control law. The obtained results are 
compared to the classical SMC. As a fuzzy control, the main advantage of the FSMC is that it 
is not based on an analytical study. 
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4.3.1 Application of the Fuzzy Lyapunov function SMC to Buck 
Fig. 25 presents the simulated output voltage and output current evolutions by application 
of the proposed FSMC for a reference voltage 5refV V= . The obtained result is similar to the 
one obtained by SMC.  
As the SMC, the SMC is tested experimentally for the case of the load variation. Fig.26 
presents the obtained results for the case of the variation of the load resistance from 10 Ω to 
15 Ω at 0.05s. The perturbation is rejected and the output voltage attends the reference 
voltage. Moreover, the amplitudes of oscillations are smaller than those obtained by 
application of the SMC. As for the SMC, the experimental test result for the case of the input 
voltage variation from 30 V to 20V, given in Fig.27, shows the robustness of the applied 
FSMC for this kind of variation. 
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Fig. 25. Output voltage evolution by application of the SMC to the studied Buck converter 
( 5Vref V= ) 
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                      (a) Reference voltage 10 V                                   (b) Reference voltage 5 V 
 

Fig. 26. Experimental test robustness of the FSMC for the variation of the load from 10 Ω to  
15 Ω 
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Fig. 27. Experimental output voltage evolution by application of the FSMC for the variation 
of the input voltage from 30V to 20V 

4.3.2 Application of the Fuzzy Lyapunov function SMC to Buck-Boost converter   
The proposed control is now applied to the studied Buck-Boost converter. Fig. 28 presents 
the simulated control signal obtained by application of the proposed FSMC. By comparison 
with the control signal obtained by application of the SMC and presented in Fig. 13, we 
notice that the control signal is smooth. So the chattering phenomenon obtained by 
application of the FSMC disappeared. 
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Fig. 28. Control signal by application of the FSMC 

Fig. 29 presents the studied converter the output voltages evolution for 20refV V= − . The 
obtained result is better than the one obtained by open-loop control. However, by 
comparing it with the output voltage presented by Fig. 12 we can notice a small oscillation. 
Fig. 30 presents the evolution of the output voltage and the current in the load for a change 
of the load resistance from 30Ω to 20Ω. By application of the FSMC, this perturbation was 
rejected and the output voltage attends the reference voltage after 30 10-3 s. For the case of a 
variation of the input voltage from 15V to 10V at 0.05s the output voltage, presented by 
Fig. 31, attends after the rejection of the perturbation the desired reference value −20V.  
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Fig. 29. Output voltage evolution obtained by application of the FSMC 
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Fig. 30. Output voltage evolution by application of the SMC for the case of load variation 
from 30Ω to 20Ω 
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Fig. 31. Output voltage evolution by application of the SMC for the case of input voltage 
variation from 15 V to 10V 
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By comparing the robustness test results obtained by application of SMC with those 
obtained by FSMC we can notice that SMC allows a faster rejection of the perturbation than 
SMC for the case of the studied Buck-Boost converter. 

5. Conclusion  
In this chapter, Sliding Mode Control (SMC) and Fuzzy Sliding Mode Control (FSMC) for 
Buck, Boost and Buck-Boost converters are proposed, tested and compared. SMC is suitable 
for switched mode DC-DC converters. Moreover, such control approach leads to good 
results.  
Two classical SMC are proposed respectively for Buck and Buck-Boost converters. The 
obtained simulation and practical results confirm the robustness of this control technique. 
The extension of SMC into FSMC aims to improve the SMC robustness and to overcome the 
chattering problem. Two classes of FSMC are presented in this chapter. The first class of 
FSMC aimed to reduce chattering by changing the nonlinear component control by a fuzzy 
function. The second class of FSMC is based on a fuzzy control insuring the Lyapunov 
function stability. Then, a Fuzzy Lypunov based SMC is developed and applied to the Buck 
and Buck-Boost converters. 
FSMC is not based on a rigorous analytical study as SMC. Thus, the same FSMC can be 
applied to Buck and Buck-Boost converters. In addition, FSMC allows the reduction of 
chattering for the case of the Buck-Boost converter thanks to the fuzzy control surface which 
allows a smooth and continuous control signal. However, the obtained results are nearly 
similar to those obtained by SMC.  
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1. Introduction 
The effective operation of the power converters of electrical energy is generally determined 
from the chosen operational algorithm of their control system. With the expansion of the 
application of the Digital Signal Processors in these control systems, gradually entering of 
novel operational principles such as space vector modulation, fuzzy logic, genetic 
algorithms, etc, is noticed. The method of sliding mode control is applicable in different 
power electronic converters – DC/DC converters, resonant converters (Sabanovic et al., 
1986). The method’ application is expanded in the quickly developing power electronic 
converters such as active power filters and compensators of the power factor (Cardenas et 
al., 1999; Hernandez et al, 1998; Lin et al., 2001; Mendalek et al., 2001). 
In this chart, results of the study of a single-phase inverter and single-phase active power 
filter both with sliding mode control are discussed. A special feature is the use of control on 
only one output variable. 

2. Single-phase inverter with sliding mode control 
2.1 Schematic and operational principle 
Different methods to generate sinusoidal voltage, which supplies different types of 
consumers, are known. Usually, a version of a square waveform voltage is generated in the 
inverter output and then using a filter the voltage first order harmonic is separated. Uni-
polar or bi-polar pulse-width modulation, selective elimination of harmonics, several level 
modulation – multilevel inverters are applied to improve the harmonic spectrum of the 
voltage (Antchev, 2009; Mohan, 1994). Inverters with sinusoidal output voltage are 
applicable in the systems of reserve or uninterruptible electrical supply of critical 
consumers, as well as in the systems for distributed energy generation. 
In this sub-chart an implementation of sliding mode control of a single-phase inverter using 
only one variable – the inverter output voltage passed to the load, is studied. As it is known, 
two single-phase inverter circuits – half-bridge and bridge, are mainly used in practice (see 
Fig.1). The inverters are supplied by a DC voltage source and a LC -filter is connected in 
their outputs. The output transformer is required at use of low DC voltage, and under 
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certain conditions it may be missing in the circuit. The voltage passed to the load is 
monitored through a reverse bias using a voltage transducer. The use of a special measuring 
converter is necessitated by the need of correct and quick tracing of the changes in the 
waveform of the load voltage at the method used here. In the power electronic converters 
studied in the chart, measuring converter CV 3-1000 produced by LEM is applied.  
 

 
a) 

 
b) 

Fig. 1. a) half-bridge and b) bridge circuits of an inverter  

Fig.2 displays a block diagram of the control system of the proposed inverter. The control 
system consists of a generator of reference sinusoid sinmU Θ  (it is not shown in the figure), 
a comparing device, a comparator with hysteresis and drivers. The control system compares 
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the transitory values of the output voltage of the inverter to these values of the reference 
sinusoid and depending on the result (negative or positive difference) control signal is 
generated. The control signal is passed to the gate of the transistor VT1 or VT2 (for half-
bridge circuit) or to the gates of the transistor pairs – VT1-VT4 or VT2-VT3 (for bridge 
circuit). 

 
Fig. 2. Block diagram of the control system with hysteresis control 

The process of sliding mode control is illustrated in Fig.3. Seven time moments are 
discussed – from t0 to t6. In the moment t0 the transistor VT1 of the half-bridge schematic, 
transistors VT1 and VT4 of the bridge schematic, respectively, turns on. The voltage of the 
inverter output capacitor C increases fed by the DC voltage source. At the reach of the upper 
hysteresis borderline sinmU HΘ + , where in H is the hysteresis size, at the moment t1, VT1 
turns off (or the pair VT1-VT4 turns off) and VT2 turns on (or the pair VT2-VT3). 
The voltage of the capacitor C starts to decrease till the moment t2, when it is equal to the 
lower hysteresis borderline sinmU HΘ − . At this moment the control system switches over 
the transistors, etc. Therefore the moments t0, t2,, t4 … and moments t1, t3, t5… are identical. 

 
Fig. 3. Explanation of the sliding- mode control 
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2.2 Mathematical description 
Fig.4 displays the circuit used to make the analysis of sliding mode control of the inverter. 
The power devices are assumed to be ideal and when they are switched over the supply 
voltage dU  with altering polarity is passed to the LC -filter. 

L

CdU

)(−+

)(+−
Ci

di

Li

 
Fig. 4. Circuit used to make the analysis of sliding mode control of the inverter 

The load current and the current of the output transformer, if it is connected in the 
schematic, is marked as Li . From the operational principle, it is obvious that one output 
variable is monitored – the voltage of the capacitor Cu . Its transient value is changed 
through appling the voltage dU  with an altering sign. The task (the model) is: 

 .sinREF Mu U tω=  (1) 

As a control variable, the production . du U  may be examined, where in: 
 

sgn[( ) ]C REFu u u H= − −  
1 ( )
1 ( )

C REF

C REF

u when u u H
u when u u H
= + − <
= − − >

 (2) 

 

The following relationships are valid for the circuit shown in Fig.4: 

 

d
d C

d C L

C
C

diU u L
dt

i i i
dui C
dt

= +

= +

=

 (3) 

Using (3) and after several transformations, it is found: 

 1 1.
.

C L
C d C

du iu U dt u dt
dt L C LC C

= = − −∫ ∫  (4) 

In conformity with the theory of sliding mode control, the following equations are written 
(Edwards & Spurgeon, 1998): 

 
d REF

C

C

x u
x u
x u

=
=
=

 (5) 
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The control variable equ  corresponding to the so-called “equivalent control” may be found 
using the following equation (Utkin, 1977): 

 0ds x x= − =  (6) 

Using (1) and (4) and taking in consideration (5) and (6), it is found: 

 2. . . . . .sin .L
eq d C M

diu u U u L L C U t
dt

ω ω= = + −  (7) 

The value found may be considered as an average value when the switching is between the 
maximum MAXU  and minimum MINU  values of the control variable (Utkin, 1977; Utkin, 
1992). If they could change between +∞  and −∞ , in theory, there is always the probability 
to achieve a mode of the sliding mode control in a certain range of a change of the output 
variable. In order to be such a mode, the following inequalities have to be fulfilled: 

 MIN eq MAXU u U< <  (8) 

for physically possible maximum and minimum values. In this case they are: 

 MIN d

MAX d

U U
U U

= −
= +

 (9) 

Resolving (7) in respect to the variable, which is being monitored Cu , and substituting in 
(9), the boundary values of the existence of the sliding mode control could be found: 

 2. . .sinL
C d M

diu U L LC U t
dt

ω ω= ± − +  (10) 

The equation (10) may be interpreted as follows: a special feature of the sliding mode 
control with one output variable – the capacitor voltage, is the influence of the load current 
changes upon the sliding mode, namely, at a sharp current change it is possible to break the 
sliding mode control within a certain interval. From this point of view, it is more suitable to 
operate with a small inductance value. As the load voltage has to alter regarding a sinusoid 
law, let (10) to be analyzed around the maximum values of the sinusoid waveform. It is 
found: 

 2

2.

. . . ( 1)L
C d M

t

diu U L L C U
dt π

ω

ω
=

⎛ ⎞= ± − + ±⎜ ⎟
⎝ ⎠

 (11) 

Where in (11) the positive sign is for the positive half period and the negative one – for the 
negative half period. After taking in consideration the practically used values of L and C  
(scores microhenrys and microfarads), the frequency of the supply source voltage 
( )50 60f or Hz=  and its maximum value MU  ( 325 156 )or V≈ , it is obvious that the 
influence of the last term could be neglected. Thus the maximum values of the sinusoidal 
voltage of the load are mainly limited from the value of the supply voltage dU  and the 
speed of a change of the load current. So, from the point of view of the sliding mode control, 
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it is good the value of dU  to be chosen bigger. Of course, the value is limited and has to be 
considered with the properties of the power switches implemented in the circuit. 

2.3 Study through computer simulation 
Study of the inverter operation is made using an appropriate model for a computer 
simulation. Software OrCad 10.5 is used to fulfill the computer simulation. 
Fig.5 displays the schema of the computer simulation. The inverter operation is simulated 
with the following loads – active, active-inductive (with two values of the inductance – 
smaller and bigger ones) and with a considerably non-linear load (single-phase bridge 
uncontrollable rectifier with active-capacitive load). Only the load is changed during the 
simulations. The supply voltage of the inverter Ud is 250V, C= 120 μF and L = 10 μH. 
 

 
Fig. 5. Schematic for the computer simulation study of sliding mode control of the inverter 
The simulation results are given in Fig.6, Fig.7, Fig.8 and Fig.9. The figures display the 
waveform of the voltage feeding the load, and the load current, which is displayed 
multiplied by 100 for the first three cases and by 40 for the last one. 
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Fig. 6. Computer simulation results of the inverter operation with an active load equal to 
500Ω using sliding mode control. Curve 1 – the voltage feeding the load, curve 2 – the load 
current 

 
Fig. 7. Computer simulation results of the inverter operation with an active-inductive load 
equal to 400Ω/840μН using sliding mode control. Curve 1 – the voltage feeding the load, 
curve 2 – the load current 

 
Fig. 8. Computer simulation results of the inverter operation with an active-inductive load 
equal to 400Ω/2Н using sliding mode control. Curve 1 – the voltage feeding the load, curve 
2 – the load current 
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Fig. 9. Computer simulation results of the inverter operation with single-phase bridge 
uncontrolled rectifier load using sliding mode control. Curve 1 – the voltage feeding the 
load, curve 2 – the load current 

The results support the probability using sliding mode control on one variable – the output 
voltage, in the inverter, to obtain a waveform close to sinusoidal one of the inverter output 
voltage feeding different types of load. 

2.4 Experimental study 
Based on the above-made study, single-phase inverter with output power of 600VA is 
materialized. The bridge schematic of the inverter is realized using IRFP450 transistors and 
transformless connection to the load. The value of the supply voltage of the inverter is 360V. 
Fig.10, Fig.11, Fig.12 and Fig.13 display the load voltage and load current waveforms for the 
load cases studied through the computer simulation.  
 

 
Fig. 10. The load voltage and load current in the case of active load  
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Fig. 11. The load voltage and load current in the case of active-inductive load with the 
smaller inductance 

 
 

 
 

Fig. 12. The load voltage and load current in the case of active-inductive load with the 
bigger inductance  
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Fig. 13. The load voltage and load current in the case of single-phase bridge rectifier 

All results show non-sinusoidal part of the output voltage less then 1.5% as well as high 
accuracy of the voltage value – (230V ± 2%). 

3. Single-phase series active power filter with sliding mode control 
3.1 Schematic and operational principle 
Active power filters are effective means to improve the energy efficiency with respect to an 
AC energy source as well as to improve energy quality (Akagi, 2006). Series active power 
filters are used to eliminate disturbances in the waveform of a network source voltage in 
such a way that they compliment the voltage waveform to sinusoidal voltage regarding the 
load. Usually pulse-width modulation is used to control the filters, but also researches of 
sliding mode control of the filters on several variables are known (Cardenas et al, 1999; 
Hernandez et al, 1998). In this sub-chart sliding mode control of a single-phase series active 
power filter on one variable – the supply voltage of the load is studied (Antchev et al, 2007; 
Antchev et al, 2008). 
Fig.14 shows the power schematic of the active power filter with the block diagram of its 
control system. 
Synchronized to the source network and filtering its voltage, the first order harmonic of the 
source voltage is extracted. This harmonic is used as a reference signal Uref. This signal is 
compared with a certain hysteresis to the transient value of the load voltage Ureal. 
Depending on the sign of the comparison, the appropriate pair of diagonally connected 
transistors (VT1-VT4 or VT2-VT3 ) of the inverter is switched on. 
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Fig. 14. Series active power filter with sliding mode control with hysteresis 

3.2 Mathematical description 
Fig.15 displays the circuit used to make the analysis of sliding mode control of the converter. 
The power switches are assumed to be ideal and in their switching the source voltage dU  
with an altering polarity is passed to the LC -filter.  
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dU
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Li
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di
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Fig. 15. Circuit used to make the analysis of sliding mode control of the series active power 
filter 
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The analysis is similar to those made for the single-phase inverter. 
The load current is marked as Li . From the operational principle, it is clear that one output 
variable – the load voltage Lu  is monitored. Its transient value is changed through appling 
the voltage dU   with an altering sign. The task (the model) is: 

 .sinREF Mu U tω=  (12) 

As a control variable, the production . du U  may be examined, where in: 
 

( )sgn L REFu u u H⎡ ⎤= − −⎣ ⎦  

( )
( )

1

1
L REF

L REF

u when u u H

u when u u H

= + − <

= − − >
 

(13) 

 

The following relationships are valid for the schematic shown in Fig.15: 

 

d
d C

С L d
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S C L

diU u L
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Using (14), it is found: 

 1 1.
.

L L
L S d C

du iu u U dt u dt
dt L C LC C

= = + − +∫ ∫  (15) 

In conformity with the theory of sliding mode control, the following equation is written 
(Edwards & Spurgeon, 1998): 

 
d REF

L

L

x u
x u
x u

=
=
=

 (16) 

The control variable equ  corresponding to the so-called “equivalent control” may be found 
using the following equation (Utkin, 1977, Utkin, 1992): 

 0ds x x= − =  (17) 

Using (12) and (15) and taking in consideration (16) and (17), it is found: 

 2. . . . .sin .L
eq d L S S M

diu u U u u LCu L L C U t
dt

ω ω= = − − − −  (18) 

The value found may be considered as an average value when the switching is between the 
maximum MAXU  and minimum MINU  values of the control variable (Utkin, 1977; Utkin 
1978). If they could change between +∞  and −∞ , in theory, there is always the probability 
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to achieve a mode of the sliding mode control in a certain range of a change of the output 
variable. In order to be such a mode, the following inequalities have to be fulfilled: 

 MIN eq MAXU u U< <  (19) 

for physically possible maximum and minimum values. In this case they are: 

 MIN d

MAX d

U U
U U

= −
= +

 (20) 

Resolving (18) with respect to the variable, which is being monitored Lu , and substituting in 
(20), the boundary values of the existence of the sliding mode control could be found: 

 2. . . . . . .sinL
L d S S M

diu U u L L C u L C U t
dt

ω ω= ± + + + +  (21) 

The equation (21) found could be interpreted in the following way: a special feature of the 
sliding mode control with one output variable – the load voltage, is the influence of the load 
current changes upon the sliding mode, namely, at a sharp current change it is possible to 
break the sliding mode control within a certain interval leading to distortion in the transient 
value of the voltage feeding the load. It is worthy to be mentioned that, for example, 
rectifiers with active-inductive load consume current with sharp changes in its transient 
value from the source. From this point of view, to reduce this influence it is more suitable to 
operate with a small inductance value. As the load voltage has to change regarding a 
sinusoid law, let (21) to be analyzed around the maximum values of the sinusoid waveform. 
It is found: 

 ( ) ( ) ( )2

2. 2.
2.

. . . . . . 1L
L d S S Mt t

t

diu U u L L C u L C U
dtπ π

ω ωπ
ω

ω
= =

=

⎛ ⎞= ± + + + + ±⎜ ⎟
⎝ ⎠

 (22) 

Where in (22) the positive sign is for the positive half period and the negative one – for the 
negative half period. After taking in consideration the practically used values of L and C  
(scores microhenrys and microfarads), the frequency of the supply source voltage 
( )50 60f or Hz=  and its maximum value MU  ( 311 156 )or V≈ , it is obvious that the 
influence of the last two terms could be neglected. Thus the maximum values of the 
sinusoidal voltage of the load is mainly limited from the value of the supply voltage dU , the 
transient value of the load voltage and the speed of a change of the load current. So, from 
the point of view of the sliding mode control, it is good the value of dU  to be chosen bigger. 
Concerning the conclusion of the influence of the load current change made based on the 
equations (21) and (22), the following may be commented: let us assume the worst case – 
short circuit of the load terminals (for example during break down regime or commutation 
processes in the load). Then the speed of the current change will be of maximum value and 
it will be limited only by the impedance of the AC supply source in a case of transformless 
active power filter. When an output transformer is present, its inductance will be summed 
to this of the source and it will additionally decrease the speed. Taking in consideration the 
maximum value of the voltage of single-phase network at a low voltage, as well as the range 
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of the inductance possible values, the speeds tentatively of 1 A
Sμ

 order may be expected. 

The value of the filter inductance is within the range of 1 to 3mH. Therefore, the influence of 
the third term in equations (21) and (22) will be approximately 10 times lower then the 
influence of the supply voltage dU . 

3.3 Study through computer simulation 
In this part, software PSIM is used to study single-phase active power filter. The operation 
of the single-phase active power filter is studied at a trapezoidal waveform of the voltage of 
the supply source. The computer simulation schematic is shown in Fig.16. The results from 
the simulation are shown in Fig.17. Total harmonic distortion of the source voltage is 
assumed to be 20%. The altitude of the trapezium is given equal to 300V. The values of the 
elements in the output of the single-phase uncontrolled rectifier are 1200 Fμ и 50Ω . 
At so chosen waveform of the AC source, the results put show good reaction of APF and 
also show its effective operation. So chosen trapezium form of the voltage is very close to 
the real cases of distortion of the source voltage. As it is seen from the results included, in 
this case of the source voltage waveform the system voltage supplying the load is obtained 
to be very closed to the ideal sinusoidal waveform without distortions around the maximum 
value of the sine wave and without presence of over voltages. 
 
 

 
 

Fig. 16. Simulation schematic of operation of the single-phase APF with single-phase 
uncontrolled rectifier with active-capacitive load 
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Fig. 17. Results of the simulation of the schematic shown in Fig.16. The upper waveform is 
the source voltage, the middle one – APF voltage, and the lower waveform – the voltage 
passed to the load 

3.4 Experimental study 
A precise stabilizer-filter for single-phase AC voltage for loads with power upto 3kVA is 
materialized. The device is realized using the block diagram shown in Fig.18. The source 
voltage dcU  for the active power filter is provided from a bi-directional converter connected 
to the network. Fig.19 shows the general appearance of the precise stabilizer-filter. Its basic 
blocks are marked. 
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Fig. 18. Block diagram of a precise stabilizer-filter of AC voltage 
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Fig. 19. Single-phase precise stabilizer-filter of AC voltage 

 

 
Fig. 20. Parameters of the load voltage when stabilizer – APF is switched off 
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Fig.20 displays the parameters of the load voltage – its value, harmonic spectrum, total 
harmonic distortion, when the stabilizer – APF is switched off. Fig.21 displays the same 
results when the stabilizer – APF is switched on. Fig.20 shows decreased effective value of 
the voltage with 13%, increased fifth harmonic and total harmonic distortion 4.5%. Fig.21 
shows the stabilization of the effective value of the load voltage to (230V - 1.2%), decrease of 
the values of all harmonics, as well as a decrease in the total harmonic distortion to 1.6%.  
Fig.22 displays results when the stabilizer – APF is switched off, the effective value of the 
source voltage is increased with approximately 10% and the total harmonic distortion of 
3.2%. Fig.23 displays results when the stabilizer – APF is switched on. It is seen a 
stabilization of the voltage feeding the load to (230V +1.8%), decrease of the values of all 
harmonics, as well as a decrease in the total harmonic distortion to 1.8%. 
 
 

 
 

 
 

Fig. 21. Parameters of the load voltage when stabilizer – APF is switched on 

Fig.24 shows transient processes at a sharp change of the source voltage. The reason that the 
sinusoidal waveform of the voltage is not seen is that the scale of the X-axis is 1s/div. The 
aim of this presentation is to be more clear that the value of the voltage feeding the load do 
not change significantly at a sharp change of the source voltage (both when its value 
decreases or increases) when the precise stabilizer-filter is switched on. 
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Fig. 22. Parameters of the load voltage when stabilizer – APF is switched off 
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Fig. 23. Parameters of the load voltage when stabilizer – APF is switched on 

 

  
а                                                                                b 

Fig. 24. Experimental results at a sharp change of the value of the source voltage. a) without 
APF, b) with APF. The upper oscillograms present the source voltage, the lower ones – the 
load voltage. 
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4. Conclusion 
The included results in the chart prove the effective operation of the single-phase inverter 
and single-phase active power filter studied with sliding mode control on one output 
variable – the voltage feeding the load. 
The results found concerning the sliding mode control of inverters and series active power 
filters based on only one variable may be expanded and put into practice for three-phase 
inverters and three-phase series active power filters. 
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1. Introduction 
This chapter presents sliding mode approach for controlling DC-DC power converters 
implementing proportional integral derivative (PID) controllers commonly used in industry. 
The core design idea implies enforcing sliding mode such that the output converter voltage 
contains proportional, integral and derivative components with the pre-selected coefficients. 
Traditionally, the method of pulse width modulation (PWM) is used to obtain a desired 
continuous output function with a discrete control command. In PWM, an external high 
frequency signal is used to modulate a low frequency desired function to be tracked. 
However, it seems unjustified to ignore the binary nature of the switching device (with 
ON/OFF as the only possible operation mode) in these power converters. Instead, sliding 
mode control utilizes the discrete nature of the power converters to full extent by using state 
feedback to set up directly the desired closed loop response in time domain. The most 
notable attribute in using sliding mode control is the low sensitivity to disturbances and 
parameter variations (Utkin, Guldner, & Shi, 2009), since uncertainty conditions are 
common for such control systems. An irritating problem when using sliding mode control 
however is the presence of finite amplitude and frequency oscillations called chattering 
(Utkin, Guldner, & Shi, 2009). In this chapter, the chattering suppression idea is based on 
utilizing harmonic cancellation in the so-called multiphase power converter structure. 
Moreover, the method is demonstrated in details for the design of two main types of DC-DC 
converter, namely the step-down buck and step-up boost converters. 
Control of DC-DC step-down buck converters is a conventional problem discussed in many 
power electronics and control textbooks (Mohan, Undeland, & Robbins, 2003; Bose, 2006). 
However, the difficulty of the control problem presented in this chapter stems from the fact 
that the parameters of the buck converter such as the inductance and capacitance are 
unknown and the error output voltage is the only information available to the designer. The 
problem is approached by first designing a switching function to implement sliding mode 
with a desired output function. Chattering is then reduced through the use of multiphase 
power converter structure discussed later in the chapter. The proposed methodology is 
intended for different types of buck converters with apriory unknown parameters. 
Therefore the method of observer design is developed for estimation of state vector 
components and parameters simultaneously. The design is then confirmed by means of 
computer simulations. 
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The second type of DC-DC converter dealt with in this chapter is the step-up boost 
converter. It is generally desired that a sliding mode control be designed such that the 
output voltage tracks a reference input. The straightforward way of choosing the sliding 
surface is to use the output voltage error in what is called direct sliding mode control. This 
methodology leads to ideal tracking should sliding mode be enforced. However, as it will be 
shown, direct sliding mode control results in unstable zero dynamics confirming a non-
minimum phase tracking nature of the formulated control problem. Thus, an indirect sliding 
mode control is proposed such that the inductor current tracks a reference current that is 
calculated to yield the desired value of the output voltage. Similar to the case of buck 
converters, chattering is reduced using multiphase structure in the sliding mode controlled 
boost converter. The results are also confirmed by means of computer simulations. 

2. Modeling of single phase DC-DC buck converter  
The buck converter is classified as a “chopper” circuit where the output voltage Cν   is a 
scaled version of the source voltage E by a scalar smaller than unity. The ideal switch 
representation of a single-phase buck converter with resistive load is shown in Fig. 1. Simple 
applications of Kirchhoff’s current and voltage laws for each resulting circuit topology from 
the two possible ideal switch’s positions allow us to get the system of differential equations 
governing the dynamics of the buck converter as it is done in many control and power 
electronics textbooks. We first define a switch’s position binary function u such that 1u =  
when the ideal switch is positioned such that the end of the inductor is connected to the 
positive terminal of the input voltage source and u = 0  otherwise. With this, we get the 
following unified dynamical system:  

 ( )1L
C

di uE
dt L

ν= −  (1) 

 1C C
L

d i
dt C R
ν ν⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (2) 

Most often, the control objective is to regulate the output voltage Cv  of the buck converter 
towards a desired average output voltage equilibrium value spv . In many applications, 
power converters are used as actuators for control system. Also, the dynamics of the power 
converters is much faster than that of the system to be controlled. Thus, it might be 
reasonable to assume that the desired output voltage spv  is constant. By applying a 
discontinuous feedback control law { }0,1u∈ , we command the position of the ideal switch 
in reference to an average value avgu . Depending on the control algorithm, avgu might take 
a constant value as in the case of Pulse Width Modulation PWM (referred to as duty ratio) 
or a time varying value as in the case of Sliding Mode Control SMC (referred to as 
equivalent control equ ). In both cases (constant, or time varying), the average control 

avgu takes values in the compact interval of the real line [0,1]. 
Generally, it is desired to relate the average value of state variables with the corresponding 
average value of the control input avgu . This is essential in understanding the main static 
features of the buck converter. In steady state equilibrium, the time derivatives of the 
average current and voltage are set to zero and the average control input adopts a value 
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given by avgu . With this in mind, the following steady-state equilibrium average current 
and voltage are obtained:  

 =C avgv u E  (3) 

 = =
avgC

L

u Ev
i

R R
 (4) 

According to equation (3) and given the fact that the average control input avgu  is restricted 
to the interval [0,1], the output voltage Cv  is a fraction of the input voltage E  and the 
converter can’t amplify it.  
 

+
-

L

RC
+

-
C

iL

E

1

0 u iC Ri
v

 

Fig. 1. Ideal switch representation of a single phase DC-DC Buck converter. 

3. Sliding mode control of single phase DC-DC Buck converter  
Control problems related to DC-DC converters are discussed in many textbooks. The control 
techniques used in these textbooks differ based on the problem formulation (e.g. available 
measured state variables as well as known and unknown parameters). PWM techniques are 
traditionally used to approach such problems. In PWM, low-power signal is amplified in 
average but in sliding mode, motion in some manifold with desired properties is enforced by 
discontinuous control. Moreover, sliding mode control provides a better solution over PWM 
due to the binary nature of sliding mode fitting the discrete nature of the available switches in 
modern power converters. In this section, the problem of regulating the output voltage v

C
of a 

DC-DC buck converter towards a desired average output voltage spv
 is presented.  

Consider the DC-DC buck converter shown in fig. 1. A control law u  is to be designed such 
that the output voltage across the capacitor/resistive load Cv  converges to a desired 
unknown constant reference voltage spv  at a desired rate of convergence. The control  u  is 
to be designed under the following set of assumptions:  
• The value of inductance L  and Capacitance C  are unknown, but their product 

m = 1 / LC  is known. 
• The load resistance R  is unknown. 
• The input voltage E  is assumed to be constant floating in the range [ ]min max,E E  . 
• The only measurement available is that of the error voltage = −C spe v v .  
• The current flowing through the resistive load iR  is assumed to be constant.  
The complexity of this problem stems from the fact that the voltage error = −C spe v v  and 
constant m  is the only piece of information available to the controller designer. 
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The dynamics of the DC-DC buck converter shown in fig. 1 are described by the unified 
dynamical system model in equations (1-2). For the case of constant load current i.e. 

constant≈Ri , the model can be reduced to that given by equations (6-7) by introducing new 
variable i : 

 ( )1 1 C
L R Li i i i

C C R
ν⎛ ⎞= − = −⎜ ⎟

⎝ ⎠
 (5) 

 ( ) ( )1
C C

di uE m uE
dt LC

ν ν= − = −  (6) 

 Cd i
dt
ν

=  (7) 

Note that the model described by equations (6-7) is only valid when the load resistance is 
constant and thus, the load current at steady state is constant. Alternatively, the load current 

Ri  might be controlled through an independent controller such that it’s always constant. 
For the case of changing load resistance, the model given by equations (6-7) becomes 
inaccurate and the converter must instead be modeled by equations (1-2) or equations (8-9) 
using the change of variable given by equation (5). 

 ( ) 1
C

di m uE i
dt RC

ν= − −  (8) 

 Cd i
dt
ν

=  (9) 

 

A conventional method to approach this problem ( Cv  to track spv ) is to design a PID 
controller with the voltage error = −C spe v v  being the input to the controller. Here, a 
sliding mode approach to implement a PID controller is presented (Al-Hosani, Malinin, & 
Utkin, 2009). A block diagram of the controller is shown in Fig. 2. The dynamics of the 
controller is described by equations (10-11) where 1L  and 2L  are design constants properly 
chosen to provide stability (as will be shown later). 

 ( )1 C sp
d L
dt
ν ν ν= −
�

 (10) 

 ( )2 C sp
di m u L
dt

ν ν ν⎡ ⎤= − + −⎣ ⎦
�

�  (11) 

 

Sliding mode is to be enforced on the PID-like switching surface given by:  

 0C sp is
mc m

ν ν−
= + =

�
 (12) 

where c  is a constant parameter that is selected by the designer to provide desired system’s 
characteristics when sliding mode is enforced. The control law based on this surface is given 
by: 
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 ( )( ) 0  if  01 1
1  if  02

s
u sign s

s
<⎧

= − = ⎨ <⎩
 (13) 

 

 

Fig. 2. Sliding Mode implementation of PID Controller. 

For sliding mode to exist, the condition 0<�ss  must be always satisfied. Using the 
equivalent control method, the solution to equations s = 0  and �s = 0  must be substituted 
in equations (6-7) to get the motion equation after sliding mode is enforced along the 
switching plane s = 0 in the system’s state space, thus 

 ( )0 C sp
ms i
c

ν ν= ⇒ = − −�  (14) 

 ( ) ( )  2 1
10 eq C sp C sp Cs u L L dt

c m
ν ν ν ν ν= ⇒ = − − + − −∫� �  (15) 

As evident from equation (15), the equivalent control equ  is indeed equivalent to a PID 
controller (Fig. 2) with respectively proportional, derivative, and integral gains 2= −PK L , 

1=IK L , and 1DK c m= − . The equivalent control equ  in (15) is then substituted into 
equations (6-7) and (10-11) resulting in the following 3rd order system equations: 

 ( )
2

22
C C

C sp C
d dEm E EL

dtdt c m
ν ν

ν ν ν ν⎡ ⎤= − − − −⎢ ⎥
⎣ ⎦

�  (16) 

 ( )1 C sp
d L
dt
ν ν ν= −
�  (17) 

To analyze stability, we write the characteristic equation of the close loop system.  

 ( )3 2
2 11 0E m m EL mEL

c
λ λ λ+ + + − =  (18) 

The constant parameters L
1
, L

2
, and c  are chosen to provide stability of the system, i.e  

 ( )2 1 2 10,    1 0,    0   1mc EL L EL L
c

> + > < + > −  (19) 
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Satisfying the above conditions will provide stability and the system will have the following 
equilibrium point:  

 ,    0,    Ec sp c spiν ν ν ν ν= = = =� � . (20) 

Fig. 3 shows simulation of the system with parameters C = 10μF , L = 2μH , c = 0.0045 , 
4

1 10= −L , and 2 199.92=L . The switching device is implemented using a hysteresis loop 
set such that the switching frequency is controlled to be about 100 KHz. As evident from fig. 
3, the output voltage Cv  converges (with finite amplitude oscillation or chattering) to the 
desired reference voltage spv  at a rate set by the chosen controller’s parameters. 
 

 

Fig. 3. Sliding mode PID control of single-phase buck converter. 

4. Estimation in sliding mode PID controlled single phase DC-DC buck 
converter  
The sliding mode PID controller described by equations (10-13) assumes only the 
knowledge of the parameter m  and the voltage error measurement = −C spe v v . However, 
the parameter m  might be unknown or varying from one converter to another. Hence, the 
problem is to complement the sliding mode PID controller with a parameter estimator such 
that the controller’s parameter can be selected automatically. For this, two types of observers 
are presented next (Al-Hosani, Malinin, & Utkin, 2009). The first type is a sliding mode 
observer, which assumes that both the reference voltage spv , and the voltage error 
= −C spe v v  are known. On the other hand, the second type is an asymptotic observer that 

assumes that the voltage error = −C spe v v  measurement is the only piece of information 
available.  
A. Sliding Mode Observer 
The converter’s parameter m  is assumed to be unknown in this case. Thus, we initially feed 
the sliding mode PID controller described by equations (10-13) with a guess value of 0m . In 
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addition, both the voltage error = −C spe v v  and the desired set point voltage spv  are 
assumed to known. Defining the known function = − = − −C spG Eu v Eu e v , equations (6-7) 
can be rewritten as: 
 
 

 di mG
dt

=  (21) 

 Cd i
dt
ν

=  (22) 

 
 

The following sliding mode observer is now proposed: 
 

 
ˆ

ˆdi mG
dt

=  (23) 

 ( ) 
ˆ

signdm M Gi
dt

= −  (24) 

 
 

where m̂  is the estimate of converter parameter m , and î  is the estimate of variable i with 
mismatch i = î − i . Choosing the constant M > m  will enforce sliding mode along the 
sliding surface i = 0 , and the average value (easily obtained using a low pass filter) of m̂  
will tend to m . The only restriction in this observer design is that estimation should be fast 
enough (such that the real value of the estimated parameters is reached before G = 0 ). To 
overcome this problem, we introduce the following modification to equation (24): 
 

 
dm̂

dt
=

−M sign G i( ) if e ≥ Δ

0∗ if e < Δ

⎧
⎨
⎪

⎩⎪
* in discrete time implementation (25) 

1ˆ ˆ+ =k km m  for e < Δ  
 

The sliding mode observer described by equations (23) and (25) needs knowledge of the 
error derivative i = de / dt  which is not measured. A straightforward solution is to employ a 
first order filter with the voltage error = −C spe v v  being the input and the output replacing 
the error derivative in equation (25). Several computer simulations are performed to confirm 
the operation of proposed observer. Fig. 4 shows simulation 1 result when using the 
following set of parameters: L = 0.81μH , C = 0.6μF , 8V=spv , E = 12V , 51 10−= ×c , 

4
1 1 10= − ×L , 2 200=L . For Simulation 2 shown in Fig. 5, the following set of parameters is 

used: L = 0.5μH , C = 1.7μF , 8V=spv , E = 12V , 51 10−= ×c , 4
1 1 10= − ×L , 2 200=L . For 

Simulation 3 shown in Fig. 6, the following set of parameters is used: L = 0.22μH , 
C = 0.76μF , 8V=spv , E = 12V , 51 10−= ×c , 4

1 1 10= − ×L , 2 200=L . As evident from 
these three different simulations, ˆ eqm  (average value of m̂ ) converges to the real value of 
m  with a desired rate of convergence set the observer parameters. The simulations also 
show that the estimation process was fast enough (estimation was complete before the 
average value of G  reaches zero).  
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Fig. 4. Simulation 1 SM PID Control of DC-DC buck converter with SM observer. 
 

 

Fig. 5. Simulation 2 SM PID Control of DC-DC buck converter with SM observer. 
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Fig. 6. Simulation 3 SM PID Control of DC-DC buck converter with SM observer. 
 

B. Asymptotic Observer 
In designing this observer, it is assumed that both the converter’s parameter m  and the 
reference set point voltage spv  are unknown. Thus, an asymptotic observer with both 
parameters being simultaneously estimated is proposed. We first define 

0( )α α= − = − − = +C spG Eu v Eu e v t , where ( )α = −t Eu e  is a known function and 0α  is 
an unknown constant. With this, equation (21) can be rewritten as: 

 ( ) ( )0
diy m t m m t
dt

α α α β= = + = +  (26) 

where 0β α= m  and m  are constants to be estimated. The following asymptotic observer is 
then proposed: 

 ˆˆ ˆ ( )α β= +y m t  (27) 

 ( )
ˆdm ky t

dt
α= −  (28) 

 
ˆd ky

dt
β
= −  (29) 

where  y = ŷ − y , β = β̂ − β , and m = m̂ − m  are the estimation mismatches. The 
estimation convergence is proven by considering the Lyapunov candidate function:  
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 ( )2 21
2

V m β= +  (30) 

The time derivative of the Lyapunov function given by equation (30) is calculated to be: 

 
2

0dV ky
dt

= − ≤  (31) 

The estimation process is over when ( ) 0α β= + =y m t . Since ( )α t  is a known time 
function, m  and β  has to be tending to zero ( m̂  and β̂  are tending to constant values). 
Thus, values of m = m̂ − m  and β = β̂ − β  are found. To demonstrate the operation of the 
proposed observer, several computer simulations are presented in Figures 7-8 for the case of 
sliding mode control of DC-DC buck converter with an asymptotic observer as described by 
equations (27-29). In these simulations, the reference set point voltage spv  is varied from 2V 
to 8V and the converter’s parameter m  is varied in the range minm  to min10m  where 

12 1 1
min 1.1765 10 − −= ×m F H . As the simulations demonstrate, estimates converge 

monotonously to the real values during the transient interval of the converter (before 
reaching G = 0 ). 
 

 

Fig. 7. Sliding Mode PID Control of buck converter with asymptotic observer. 

5. Modeling and stability analysis of sliding mode controlled single phase 
DC-DC buck converter  
In this section, a different type of DC-DC converter namely the boost converter is discussed. 
The boost converter is classified as an amplification circuit where the output voltage is a 
scaled version of the input voltage by a scalar greater than unity. The ideal switch 
representation of a single-phase boost converter with resistive load is shown in Fig. 9. 
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Fig. 8. Sliding Mode PID Control of buck converter with asymptotic observer. 
Simple applications of Kirchhoff’s current and voltage laws for each resulting circuit 
topology from the two possible ideal switch’s positions allow us to get the system of 
differential equations governing the dynamics of the boost converter. Thus, we obtain the 
following unified dynamical system model: 

 ( )1 1C C
L

d u i
dt C R
ν ν⎡ ⎤= − −⎢ ⎥⎣ ⎦

 (32) 

 ( )1 1L
C

di E u
dt L

ν= ⎡ − − ⎤⎣ ⎦  (33) 

Most often, it is desired to regulate the output voltage Cv  to a constant desired value spv  or 
a to track a given reference signal. Next, we will distinguish between two types of control 
strategies when dealing with the DC-DC Boost converters. These are the direct and indirect 
control method. The control objective here is to drive the average of the output voltage Cv  
to a desired equilibrium value spv .  
A. Direct sliding Mode control of DC-DC Boost converter 
In the direct sliding mode control method, the output voltage Cv  is used directly to 
synthesize a suitable sliding surface yielding the desired objective. For example, consider 
the following sliding surface and its associated control law: 

 direct = −sp Cs v v  (34) 

 ( )( )direct
1 1 sign
2

u s= −  (35) 

For sliding mode to exist, the condition direct direct 0<�s s  must always hold. Thus, we must 
have />L Ci v R since 
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 direct 0= ⇒ =C sps v v  (36) 

 ( ) ( )direct 0 1 1sp sp
eq L eq

L
s u i u

R i R
ν ν

= ⇒ − = ⇒ − =�  (37)  

Thus, the motion in sliding mode is governed by the following first order differential 
equation: 

 
21 spL

L

di E
dt L Ri

ν⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (38) 

The system has an equilibrium point 2 /=ss
L spi ERv . It is not difficult to see that the system 

exhibits an unstable equilibrium point (Sira-Ramírez, 2006) and we shall establish this via 
several approaches.  
First, using an approximate linearization approach, the local stability around the 
equilibrium point of the zero dynamics 2 /=ss

L spi ERv  will be investigated. Expanding the 

right-hand side of equation (38) into its Taylor series about the point = ss
L Li i , we obtain: 

 ( ) ( )
2

1
1 O

ss
L L

sp ssL
L L

L i i

di E a i i i
dt L Ri

ν

=

⎛ ⎞
⎜ ⎟= − + = +
⎜ ⎟
⎝ ⎠

 (39) 

( )2 2

1 2 0

O1where   ,       lim 0
ss

L L

sp ss
L L

iL L spi i

id E Ra E i i i
di L Ri i

ν

ν →
=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − = = − =

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
2

2 . .L
L

sp

di E R i H O T
dt ν

= +  (40) 

If we restrict our attention to a sufficiently small neighborhood of the equilibrium point 
such that the higher order term O i( ) is negligible, then  

 
2

2
L

L
sp

di E R i
dt ν

=  (41) 

Clearly, the equilibrium point 2 /=ss
L spi v ER  is unstable in view of the fact the linearized 

zero dynamics exhibits a characteristic polynomial with a zero in the right-half part of the 
complex plane.  
Another way of showing instability of the zero dynamics of a direct controlled DC-DC boost 
converter is to utilize Lyapunov stability theory. For example, consider the following 
positive definite Lyapunov candidate function:  

 ( )
221

2
sp

L LV i Ei
R
ν⎛ ⎞

⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (42) 
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Fig. 9. Phase Portrait diagram for the case of Direct Sliding Mode control of boost converters 

The time derivative of the above Lyapunov candidate function (taking into account that 
0>Li ) is: 

 ( )
22

0sp
L L

L

EV i Ei
Li R

ν⎛ ⎞
⎜ ⎟= − ≥
⎜ ⎟
⎝ ⎠

 (43) 

Thus, the system exhibits an unstable zero dynamics. The phase portrait diagram shown in 
Fig. 9 also confirms this. The fact that the direct voltage controlled boost converters exhibits 
an unstable equilibrium point is addressed in the control system literature, by stating that 
the output voltage is a non-minimum phase output. On the contrary, as we will see next, the 
inductor current is said to be minimum phase output and thus, current controlled boost 
converter doesn’t exhibit an unstable equilibrium point. 
 

 
 

Fig. 10. Sliding Mode Voltage controlled (direct) boost converter 
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Simulation 1 (left) and 2 (right) in Fig. 10 demonstrates the instability of the zero dynamics 
for the case of direct voltage controlled DC-DC buck converters. For both of these 
simulations, the following converter parameters are used: L = 1H , R = 1Ω , C = 1F , 
E = 1V , 1.5V=spv . Both simulations assume an initial voltage of ( )0 1.5V= =cv t . The 
initial inductor current value is ( )0 2.2A 2.25A= = < =ss

L Li t i  for simulation 1 and 
( )0 2.3A 2.25A= = > =ss

L Li t i  for simulation 2. 
 
B. Indirect sliding Mode control of DC-DC boost converter 
 

 

Fig. 11. Sliding Mode current controlled (indirect) boost converter  

As demonstrated before, voltage-sliding mode controlled DC-DC boost converters exhibit 
unstable equilibrium points. The alternative is then to use a sliding surface based on the 
inductor current such that when it is set to zero, leads to a desired value of the input 
inductor current in correspondence with the desired output equilibrium voltage. Consider 
the following indirect current based sliding mode control:  

 indirect L sps i i= −  (44) 

 ( )( )indirect
1 1 sign
2

u s= −  (45) 

Where spi  is a desired input inductor current calculated in accordance with desired output 
voltage spv . To calculate the needed spi , we compute the equilibrium point of the system 
under ideal sliding mode conditions, thus: 

 
( ) ( )

2

indirect direct0 ,   0 1 ,   0 1C C C
L sp eq eq sp sp

C

dEs i i s u u i i
dt R ER
ν ν ν

ν
= ⇒ = = ⇒ − = = ⇒ − = ⇒ =�  (46) 
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For the desire an output voltage spv , the needed set point value for the inductor current is 
found as 

 
2
C

spi
ER
ν

=  (47) 

The motion after sliding mode is enforced is governed by the following equation: 

 1C C
sp

C

d E i
dt C R
ν ν

ν
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

 (48) 

It is evident that the unique equilibrium point of the zero dynamics is indeed an 
asymptotically stable one. To proof this, let’s consider the following Laypunov candidate 
function:  

 ( )21
2 C spV ν ν= −  (49) 

The time derivative of this Lyapunov candidate function is  

 

( )

( )

( )( )

( ) ( )

2

2 2

2

1

1

1

1

C
C sp sp

C

sp C
C sp

C

C sp C sp
C

C sp C sp
C

EV i
C R

C R R

C

C

νν ν
ν

ν νν ν
ν

ν ν ν ν
ν

ν ν ν ν
ν

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
⎡ ⎤
⎢ ⎥= − −
⎢ ⎥⎣ ⎦

= − − −

= − − −

�

 (50) 

The time derivative of the Lyapunov candidate function is negative around the equilibrium 
point spv  given that 0>Cv  around the equilibrium. To demonstrate the efficiency of the 
indirect control method, figure 11 shows simulation result when using the following 
parameters: L = 40mH , C = 4μF , R = 40Ω , E = 20V , 40V=spv . 

6. Chattering reduction in multiphase DC-DC power converters 
One of the most irritating problems encountered when implementing sliding mode control 
is chattering. Chattering refers to the presence of undesirable finite-amplitude and 
frequency oscillation when implementing sliding mode controller. These harmful 
oscillations usually lead to dangerous and disappointing results, e.g. wear of moving 
mechanical devices, low accuracy, instability, and disappearance of sliding mode. 
Chattering may be due to the discrete-time implementation of sliding mode control e.g. with 
digital controller. Another cause of chattering is the presence of unmodeled dynamics that 
might be excited by the high frequency switching in sliding mode.  
Researchers have suggested different methods to overcome the problem of chattering. For 
example, chattering can be reduced by replacing the discontinuous control action with a 
continuous function that approximates the sign s t( )( )  function in a boundary later layer of 
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the manifold s t( ) = 0  (Slotine & Sastry, 1983; Slotine, 1984). Another solution (Bondarev, 
Bondarev, Kostyleva, & Utkin, 1985) is based on the use of an auxiliary observer loop rather 
than the main control loop to generate chattering-free ideal sliding mode. Others suggested 
the use of state dependent (Emelyanov, et al., 1970; Lee & Utkin, 2006) or equivalent control 
dependent (Lee & Utkin, 2006) gain based on the observation that chattering is proportional 
to the discontinuous control gain (Lee & Utkin, 2006). However, the methods mentioned 
above are disadvantageous or even not applicable when dealing with power electronics 
controlled by switches with “ON/OFF” as the only admissible operating states. For 
example, the boundary solution methods mentioned above replaces the discontinuous 
control action with a continuous approximation, but control discontinuities are inherent to 
these power electronics systems and when implementing such solutions techniques such as 
PWM has to be exploited to adopt the continuous control action. Moreover, commercially 
available power electronics nowadays can handle switching frequency in the range of 
hundreds of KHz. Hence, it seems unjustified to bypass the inherent discontinuities in the 
system by converting the continuous control law to a discontinuous one by means of PWM. 
Instead, the discontinuous control inputs should be used directly in control, and another 
method should be investigated to reduce chattering under these operating conditions. 
The most straightforward way to reduce chattering in power electronics is to increase the 
switching frequency. As technology advances, switching devices is now manufactured with 
enhanced switching frequency (up to 100s KHz) and high power rating. However, power 
losses impose a new restriction. That is even though switching is possible with high 
switching frequency; it is limited by the maximum allowable heat losses (resulting from 
switching). Moreover, implementation of sliding mode in power converters results in 
frequency variations, which is unacceptable in many applications.  
The problem we are dealing with here is better stated as follow. We would like first to 
control the switching frequency such that it is set to the maximum allowable value 
(specified by the heat loss requirement) resulting in the minimum possible chattering level. 
Chattering is then reduced under this fixed operating switching frequency. This is 
accomplished through the use of interleaving switching in multiphase power converters 
where harmonics at the output are cancelled (Lee, 2007; Lee, Uktin, & Malinin, 2009). In fact, 
several attempts to apply this idea can be found in the literature. For example, phase shift 
can be obtained using a transformer with primary and secondary windings in different 
phases. Others tried to use delays, filters, or set of triangular inputs with selected delays to 
provide the desired phase shift (Miwa, Wen, & Schecht, 1992; Xu, Wei, & Lee, 2003; Wu, Lee, 
& Schuellein, 2006). This section presents a method based on the nature of sliding mode 
where phase shift is provided without any additional dynamic elements. The section will 
first presents the theory behind this method. Then, the outlined method will be applied to 
reduce chattering in multiphase DC-DC buck and boost converters.  
A. Problem statement: Switching frequency control and chattering reduction in sliding mode power 
converters 
Consider the following system with scalar control : 

 ( ) ( ), ,     , , nx f x t b x t u x f b= + ∈� \  (51) 

Here, control is assumed to be designed as a continuous function of the state variables, i.e. 
0( )u x . In electric motors with current as a control input, it is common to utilize the so-called 

“cascaded control”. Power converters usually use PWM as principle operation mode to 
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implement the desired control. One of the tools to implement this mode of operation is 
sliding mode control. A block diagram of possible sliding mode feedback control to 
implement PWM is shown in fig. 12. When sliding mode is enforced along the switching 
line 0( )s u x u= − , the output u  tracks the desired reference control input 0( )u x . Sliding 
mode existence condition can be found as follow:  

 

( ) ( )

( ) ( ) ( ) ( )( )

0

T
0

, sign , 0

sign , grad

= − = = >

⇒ = − = +

�

�

s u x u u v M s M

s g x M s g x u f bu
 (52) 

Thus, for sliding mode to exist, we need to have M > g x( ) .  
 

 

Fig. 12. Sliding mode control for simple power converter model 

 

 

Fig. 13. Implementation of hysteresis loop with width Δ = hK M . Oscillations in the vicinity 
of the switching surface is shown in the right side of the figure. Frequency control is 
performed by changing the width of a hysteresis loop in switching devices (Nguyen & Lee, 
1995; Cortes &  Alvarez, 2002) 
To maintain the switching frequency at a desired level desf , control is implemented with a 
hysteresis loop (switching element with positive feedback as shown in fig. 13). Assuming 
that the switching frequency is high enough such that the state x  can be considered constant 
within time intervals 1t  and 2t  in fig. 13, the switching frequency can be calculated as: 

 1 2
1 2

1 ,    ,    
( ) ( )

f t t
t t M g x M g x

Δ Δ
= = =

+ − +
 (53) 

Thus, the width of the hysteresis loop needed to result in a switching frequency desf  is: 

 
2 2( )1

2des

M g x
f M

−
Δ =  (54) 
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desf  is usually specified to be the maximum allowable switching frequency resulting in the 
minimum possible level of chattering. However, this chattering level may still not be 
acceptable. Thus, the next step in the design process is to reduce chattering under this 
operating switching frequency by means of harmonics cancellation, which will be discussed 
next.  
 

"
M

M−
∫+( )0u x

m
ms mu

M

M−
∫+( )0u x

m
1s 1u

∑ u

−

−

 

Fig. 14. m-phase power converter with evenly distributed reference input 

Let’s assume that the desired control ( )0u x  is implemented using m  power converters, 
called “multiphase converter” (Fig. 14) with 0 /= −i is u m u  where i = 1, 2,K , m . The 
reference input in each power converter is 0 /u m . If each power converters operates 
correctly, the output u  will track the desired control ( )0u x . The amplitude A  and 
frequency f  of chattering in each power converter are given by: 

 ( )22 ( )
,   

2 2
−Δ

= =
Δ

M g x m
A f

M
 (55) 

The amplitude of chattering in the output u  depends on the amplitude and phase of 
chattering in each leg and, in the worst-case scenario, can be as high as m  times that in each 
individual phase. For the system in Fig. 14, phases depend on initial condition and can’t be 
controlled since phases in each channel are independent in this case. However, phases can 
be controlled if channels are interconnected (thus not independent) as we will be shown 
later in this section.  
Now, we will demonstrate that by controlling the phases between channels (through proper 
interconnection), we can cancel harmonics at the output and thus reduce chattering. For 
now, let’s assume that m − phases power converter is designed such that the frequency of 
chattering in each channel is controlled such that it is the same in each phase f = 1 / T( ) . 
Furthermore, the phase shift between any two subsequent channels is assumed to be T / m . 
Since chattering is a periodic channel, it can be represented by its Fourier series with 
frequencies ω ω=k k  where ω = 2π / T and k = 1, 2,K ,∞ . The phase difference between the 
first channel and ith channel is given by ( )2 /φ π ω=i m . The effect of the kth harmonic in the 
output signal is the sum of the individual kth harmonics from all channels and can be 
calculated as: 
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( )( )

1 1

0 0

2 2sin Im exp

Im exp    

m m

k k
i i

k

t i j t i
m m

Z j t

π πω ω
ω ω

ω

− −

= =

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− = −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

=

∑ ∑
 (56) 

 
1

0

2where   exp
m

i

kZ j i
m
π−

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑  

Now consider the following equation: 

 ( )
1

0 1

2 2 2exp exp 1 exp
m m

i i

k k kZ j j i j i Z
m m m
π π π−

′= =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − + = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑  (57) 

The solution to equation (57) is that either exp − j2πk / m( ) = 1  or Z = 0 . Since we have 
exp − j2πk / m( ) = 1  when k / m  is integer, i.e. k = m, 2m,K , then we must have Z = 0  for 
all other cases. This analysis means that all harmonics except for lm  with l = 1, 2,K  are 
suppressed in the output signal. Thus, chattering level can be reduced by increasing the 
number of phases (thus canceling more harmonics at the output) provided that a proper 
phases shift exists between any subsequent phases or channels.  
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Fig. 15. Interconnection of channels in two-phase power converters to provide desired phase 
shift  

The next step in design process is to provide a method of interconnecting the channels such 
that a desired phase shift is established between any subsequent channels. To do this, 
consider the interconnection of channels in the two-phase power converter model shown in 
Fig 15. The governing equations of this model are:  

 *
1 0 1 2 0 2 2 2 1/ 2 , / 2 ,= − = − = −s u u s u u s s s  (58) 

The time derivative of 1s  and *
2s  is are given by: 

 ( ) ( ) ( ) ( )( )1 1 0sign , / , 2, grad= − = = = +� Ts a M s a g x m m g x u f bu  (59) 

 ( ) ( )* *
2 1 2sign sign= −�s M s M s  (60) 
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Consider now the system behavior in the *
1 2,s s  plane as shown in Fig. 16 and 17. In Fig. 16, 

the width of hysteresis loops for the two sliding surfaces 1 0=s  and *
2 0=s  are both set to 

Δ . As can be seen from figure 16, the phase shift between the two switching commands 1v  
and 2v  is always T / 4  for any value of Δ , where T  is the period of chattering oscillations 
T = 2Δ / m . Also, starting from any initial conditions different from point 0 (for instance ′0  
in Fig. 16), the motion represented in Fig. 16 will appear in time less than T / 2 .  
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Fig. 16. System behavior in s plane with α = 1  and 0a >  
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Fig. 17. System behavior in s plane with 1α >  and 0a >  

If the width of the hysteresis loop for the two sliding surface 1 0=s  and *
2 0=s  are set to Δ  

and αΔ  respectively (as in Fig. 17), the phase shift between the two switching commands 1v  
and 2v  can be controlled by proper choice of α . The switching frequency f  and phase shift 
φ  are given by: 
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 2 2
1 2 ,MT
f M a M a M a

Δ Δ Δ
= = + =

− + −
 (61) 

 ( )( )0
( ),    ,   ( ) ( ) grad

2
Tg xa g x g x u f bu

M m
αφ Δ

= = = = +  (62) 

To preserve the switching cycle, the following condition must always be satisfied:  

 
2M M a
αΔ Δ

≤
+

 (63) 

Thus, to provide a phase shift φ = T / m , where m  is the number of phases, we choose the 
parameter α  as: 

 
( )

2

2 2

4
α =

−

M

m M a
 (64) 

The function a  is assumed to be bounded i.e. max< <a Ma . With this, condition (63) can 
be rewritten as: 

 
max

2 2  or   1 2m a M m
M a m

Δ ⎛ ⎞> ≤ − ≥⎜ ⎟− ⎝ ⎠
 (65) 

It is important to make sure that the selected α  doesn’t lead to any violation of condition 
(63) or (65) which might lead to the destruction of the switching cycle. Thus, equation (63) is 
modified to reflect this restriction, i.e.  

 ( )
2

2 2
4 2if 1

2 2if 1

M a M
mm M a

M M a M
M a m

α

⎧ ⎛ ⎞< −⎪ ⎜ ⎟
⎝ ⎠−⎪

= ⎨
⎪ ⎛ ⎞− ≤ <⎜ ⎟⎪ + ⎝ ⎠⎩

 (66) 

 

 

Fig. 18. Master-slave two-phase power converter model 
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Another approach in which a frequency control is applied for the first phase and open loop 
control is applied for all other phases is shown in Fig. 18. In this approach (called master-
slave), the first channel (master) is connected to the next channel or phase (slave) through an 
additional first order system acting as a phase shifter. This additional phase shifter system 
acts such that the discontinuous control 2v  for the slave has a desired phase shift with 
respect to the discontinuous control 1v  for the master without changing the switching 
frequency. In this system, we have:  

 1 0 1
1 ,    2s u u m
m

= − =  (67) 

 1 1 0
( )sign( ),   ,   ( ) grad ( )Tg xs a M s a g x u f bu
m

= − = = +�  (68) 

 ( ) ( )( )* *
2 1 2sign sign ,= −�s KM s s  (69) 

The phase shift between 1v  and 2v  (based on s-plane analysis) is given by  

 
2KM

φ Δ
=  (70) 

Thus, the value of gain K  needed to provide a phase shift of T / m  is:  

 
( )2 2

24

m M a
K

M

−
=  (71) 

Please note that, K = 1 / α  should be selected in compliances with equation (63) to preserve 
the switching cycle as discussed previously. To summarize, a typical procedures in 
designing multiphase power converters with harmonics cancellation based chattering 
reduction are: 
1. Select the width of the hysteresis loop (or its corresponding feedback gain hK  ) to 

maintain the switching frequency in the first phase at a desired level (usually chosen to 
be the maximum allowable value corresponding to the maximum heat power loss 
tolerated inn the system).  

2. Determine the number of needed phases for a given range of function a  variation.  
3. Find the parameter α  such that the phase shift between any two subsequent phases or 

channels is equal to 1 / m  of the oscillation period of the first phase.  
Next, we shall apply the outlined procedures to reduce chattering in sliding mode 
controlled multiphase DC-DC buck and boost converters.  

7. Chattering reduction in multiphase DC-DC buck converters 

Consider the multiphase DC-DC buck converter depicted in Fig. 19. The shown converter 
composed of n = 4  legs or channels that are at one end controlled by switches with 
switching commands u

i
∈ 0,1{ }, i = 1,K , n , and all connected to a load at the other end. A 

n − dimensional control law [ ]1 2, , ,= …
T

nu u u u  is to be designed such that the output 
voltage across the resistive load/capacitance converges to a desired unknown reference 
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voltage spv  under the following assumptions (similar to the single-phase buck converter 
discussed earlier in this chapter): 
• Values of inductance L  and capacitance C  are unknown, but their product 

m = 1 / LC is known.  
• Load resistance R  and input resistance r  are unknown.  
• Input voltage E  is assumed to be constant floating in the range [ ]min max,E E .  
• The only measurement available is that of the voltage error = −C spe v v .  
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Fig. 19. 4-phase DC-DC buck converter 

The dynamics of n −  phase DC-DC buck converter are governed by the following set of 
differential equations: 

 ( )1 ,    1,...,k k k Ci Eu ri k n
L

ν= − − =�  (72) 

 
1

1 n

c k R
k

i i
C

ν
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑�  (73) 

A straightforward way to approach this problem is to design a PID sliding mode controlled 
as done before for the single-phase buck converter cases discussed earlier in this chapter. To 
reduce chattering, however, we exploit the additional degree of freedom offered by the 
multiphase buck converter in cancelling harmonics (thus reduce chattering) at the output. 
Based on the design procedures outlined in the previous section, the following controller is 
proposed: 

 ( )1 C spLν ν ν= −�  (74) 

 ( )
~

1 2 ,     m=1C spi m u L LCν ν ν⎡ ⎤= − + −⎣ ⎦
�

�  (75) 

 ( )1
1 1

C sps i
mc m

ν ν= − + �  (76) 

 [ ]1
1sign( ) sign( ) ,    2,..., ,    
2k k ks Kb s s k n b−= − = =�  (77) 
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 ( )1 1 sign( ) ,    1,...,
2k ku s k n= − =  (78) 

The time derivative of the sliding surface in the first phase is given by:  

 ( ) 1 1 2
1

1 1 1sign( )   ,    
2 2

n

k R C sp
k

s a b s a i i L b
c mC

ν ν ν
=

⎛ ⎞
= − = − + + − − =⎜ ⎟

⎝ ⎠
∑� �  (79) 

To preserve the switching cycle, the gain K = 1 / α  is to be selected in accordance with 
equation (66) . Thus, we must have  

 

2 21   if  1
4

1 21   if  1 1
2

n a a
b b n

K
a a
b n b

⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎜ ⎟− < −⎜ ⎟ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎝ ⎠= ⎨
⎪ ⎛ ⎞ ⎛ ⎞+ − ≤ <⎜ ⎟⎪ ⎜ ⎟

⎝ ⎠⎝ ⎠⎩

 (80) 

As we can see from equation (80), the parameter a / b  is needed to implement the controller. 
However, this parameter can be easily obtained by passing the signal ( )1sign s  as the input 
to a low pass filter. The output of the low pass filter is then a good estimate of the needed 
parameter. This is because when sliding mode is enforced along the switching surface 1 0=s , 
we also have 1 0=�s  leading to the conclusion that ( )( )1sign /=eqs a b . Of course, controller 
parameters c , 1L , and 2L  must be chosen to provide stability for the error dynamics similar 
to the single-phase case discussed earlier in this chapter. Using the above-proposed 
controller, the switching frequency is first controlled in the first phase. Then, a phase shift of 
T / n  (where T  is chattering period, and n  is the number of phases) between any 
subsequent channels is provided by proper choice of gain K  resulting in harmonics 
cancellation (and thus chattering reduction) at the output. Fig. 20 shows simulation result for 
a 4-phase DC-DC buck converter with sliding mode controller as in equations (74-78). The 
parameters used in this simulation are L = 0.1μH , C = 8.5μF , R = 0.01Ω , E = 12V , 

49.2195 10−= ×c , 4
1 10= −L , and 2 199.92=L . The reference voltage spv  is set to be 

2.9814V . As evident from the simulation result, the switching frequency is maintained at 
f = 1 / T = 100KHz . Also, a desired phase shift of T / 4  between any subsequent channels is 

provided leading to harmonics cancellation (and thus chattering reduction) at the output.  

8. Chattering reduction in multiphase DC-DC boost converters 
In this section, chattering reduction by means of harmonics cancellation in multiphase DC-
DC boost converter is discussed (Al-Hosani & Utkin, 2009). Consider the multiphase (n = 4) 
DC-DC boost converter shown in Fig. 21. The shown converter is modeled by the following 
set of differential equations: 

 ( )( )1 1k k Ci E u
L

ν= − −�  (81) 

 ( )
1

1 11
n

C K k C
k

u i
C R

ν ν
=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑�  (82)
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(a)

 

(b)
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(c)

 
Fig. 20. Simulation of sliding mode controlled 4-phase DC-DC buck converter: (a): the top 
figure shows the output voltage across the resistive load/capacitor. Shown also are currents 
in the 1st and 2nd phases as well as current flowing through the load. (b): Switching Frequency 
is controlled in the first phase and a phase shift of a quarter period is provided between any 
two subsequent channels. (c): Zoomed in picture of the 4 currents as well as the output 
current going through the load. The amount of chattering is reduced at the output through 
harmonics cancellation provided by the phase-shifted currents.  

where Cv  is the voltage across the resistive load/capacitor, , 1, ,= …ki k n  is the current 
flowing through kth leg, and E  is the input voltage. A n-dimensional control law 

[ ]1 2, ,..., T
nu u u u=  is to be designed such that the output voltage Cv  across the 

capacitor/resistive load converges to a desired known constant reference value spv . It is 
assumed that all currents , 1, ,= …ki k n  and the output voltage Cv  are measured. Also, the 
inductance L  and capacitance C  are assumed to be known.  
The ultimate control’s goal is to achieve a constant output voltage of spv . As discussed 
earlier in this chapter, direct control of the output voltage for boost converters results in a 
non-minimum phase system and therefore unstable controller. Instead, we control the 
output voltage indirectly by controlling the current flowing through the load to converge to 
a steady state value 0i  that results in a desired output voltage spv . By analyzing the steady-
state behavior of the multiphase boost converter circuit, the steady state value of the sum of 
all individual currents in each phase is given by: 

 
2

0
1

n
spss

k
k

i i
RE
ν

=
= =∑  (83) 
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Fig. 21. 4-phase DC-DC boost converter 

A sliding mode controller is designed such that each leg of the total n  phases supplies an 
equal amount 0 /i n  at steady state resulting in a total current of i

0
 flowing through the 

resistive load at the output. To reduce chattering (through harmonics cancellation), the 
switching frequency f = 1 / T  is first controlled in the 1st phase. Then a phase shift of T / n  
is provided between any two subsequent phases. Assuming that the switching device is 
implemented with a hysteresis loop of width Δ  for the first phase, and αΔ  for all other 
phases, we propose a controller with the following governing equations: 

 0 / , 1, ,= − = …k ks i i n k n  (84) 

 *
2 2 1= −s s s  (85) 

 * *
1, 3, ,−= − = …k k ks s s k n  (86) 

The switching commands for each leg in the multiphase boost converter are given by: 

 ( )( )1 1
1 1 sign
2

u s= −  (87) 

 ( )( )1 1 sign ,    2,...,
2k ku s k n∗= − =  (88) 

The time derivative of the switching surfaces are given by: 

 ( )1 1sign , / / 2 ,    / 2= − = − =� C Cs a b s a E L v L b v L  (89) 

 ( ) ( )* *
2 1 2sign sign= −�s b s b s  (90) 

 ( ) ( )* * *
1sign sign , 3, ,−= − =� …k k ks b s b s k n  (91) 
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(a)
    

 

(b)    

 

Fig. 22. Simulation of 1-phase, 2-phases and 4-phases Boost converter with 40V=spv  . 
Figure (b) shows the switching command for the case of 4-phase boost converter. Clearly, a 
desired phase shift of one quarter chattering period is provided.  
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(a)    

 

(b)    

 
 

Fig. 23. Simulation of 1-phase, 4-phases and 8-phases Boost converter with 120V=spv . 
Figure (b) shows the switching command for the case of 8-phase boost converter. Clearly, a 
desired phase shift of one-eighth chattering period is provided. 
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The needed gain 1 / α=hK  in figure 13 to implement a hysteresis loop of width αΔ  is 
calculated based on equation (66), i.e.,  
 
 

 

2

2 2
4 2  if  1

( )1
2 2  if  1 1h

b a
b nn b a

K b a
b a n b

α

⎧ ⎛ ⎞< −⎪ ⎜ ⎟− ⎝ ⎠⎪= = ⎨
⎛ ⎞⎪ − ≤ <⎜ ⎟⎪ + ⎝ ⎠⎩

 (92) 

 
 

In figures 28-31, several simulations are conducted with converter’s parameters:  

20VE = , 40L mH= , 4C Fμ= . 

In the simulation in figure 28-29, the output voltage converges more rapidly to the desired 
set point voltage 40V=spv  for the case of 4-phases compared to the 2-phase and 1-phase 
cases. This is because of the fact that for a 4-phase power converter, only one fourth of the 
total current needed is tracked in each phase leg resulting in a faster convergence. It is also 
evident that a desired phase shift of T / 4  is successfully provided with the switching 
frequency controlled to be f = 1 / T ≈ 40KHz . In simulations shown in figures 30-31, 4-
phases is not enough to suppress chattering and thus eight phases is used to provide 
harmonics cancellation (for up to the seven harmonic) resulting in an acceptable level of 
chattering. The output voltage converges to the desired voltage 120V=spv  at a much 
faster rate than that for the 1-phase and 4-phases cases for the same reason mentioned 
earlier.  
 

8. Conclusion 
Sliding Mode Control is one of the most promising techniques in controlling power 
converters due to its simplicity and low sensitivity to disturbances and parameters’ 
variations. In addition, the binary nature of sliding mode control makes it the perfect choice 
when dealing with modern power converters with “ON/OFF” as the only possible 
operation mode. In this paper, how the widely used PID controller can be easily 
implemented by enforcing sliding mode in the power converter. An obstacle in 
implementing sliding mode is the presence of finite amplitude and frequency oscillations 
called chattering. There are many factors causing chattering including imperfection in 
switching devices, the presence of unmodeled dynamics, effect of discrete time 
implementations, etc.  
In this chapter, a method for chattering reduction based on the nature of sliding mode is 
presented. Following this method, frequency of chattering is first controlled to be equal to 
the maximum allowable value (corresponding to the maximum allowable heat loss) 
resulting in the minimum possible chattering level. Chattering is then reduced by providing 
a desired phase shift in a multiphase power converter structure that leads to harmonics 
elimination (and thus chattering reduction) at the output. The outlined theory is then 
applied in designing multiphase DC-DC buck and boost converters.  
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1. Introduction

Nowadays, the manufacture of arc welding/cutting power source is mainly based on
analog control in converters (Cho et al., 1996), in which component parameter flutters and
performance varies with the changing of the environment and time. Owing to the fact
that digital control technology is flexible, exact and reliable, it is the up-to-date method
used in soft-switch arc welding/cutting power supply. The main circuit of high power
arc welding/cutting power supply often uses Phase-Shift Full-Bridge (PS-FB) topology. As
to PS-FB DC/DC converter circuit, there are generally three control methods: PID control,
sliding mode control and fuzzy control. PID control is the most commonly used with
simple algorithm, great steady-state performance and no steady-state error in the output,
however, its dynamic performance is poor. Sliding mode control has excellent dynamic
performance while it cannot guarantee no steady-state error in the output due to inertia
that actual systems always have (He et al., 2004). Fuzzy control has good robustness, but
its algorithm is complicated and its accuracy is low (Arulselvi et al., 2004). According to the
basic characteristics of arc welding and cutting, from no-load to load, current is detected
and it is expected that building current quickly with appropriate current overshoot to pilot
arc easily and no steady-state error, PID control is more suitable for this case; from load to
no-load, voltage is detected and it is expected that building voltage quicklywith small voltage
overshoot and it is not necessary high accuracy of voltage control, sliding mode control is
more suitable for this case.
In this paper, the basic electrical characteristics and the needs of arc welding/cutting power
supply, such as load current, short current and no-load voltage are analyzed. Considering
to the grid voltage fluctuation, economical and personal safety, the arc welding/cutting
power supply with synthetic control of Sliding Mode Control (SMC) and PI is researched and
designed. Through demonstrating the external characteristic demands of welding/cutting
power supply and analyzing the control algorithm, PI control is used on the current loop
and SMC is introduced on the voltage loop. This method has not only effectively solved the
voltage overshoot, but also realized a faster voltage resume to pilot arc again quickly. The
control algorithm of phase shift full bridge indirect SMC based on the average state space
model is deduced theoretically, and a direct phase shift PWM wave generation method is
applied, which makes the control more practical and simpler. Some experiments on a 20
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kW arc welding/cutting power source are conducted by digital control between the synthetic
control of SMC and PI and the single PI control on TMS320LF2407. The results prove the
effectiveness and robustness of the SMC and PI synthetic control.

2. The circuit topology and external characteristic

2.1 The circuit topology
In this soft-switch arc welding/cutting power supply, the Phase-Shift Full-Bridge ZVS
(FB-ZVS-PWM) converter (Ruan et al., 2001) is employed. Although the volt-ampere
characters and the ranges of voltage and current of arc welding machines and cutting
machines are different, they both share the fundamental output characters of quickly slope
voltage and invariable current; therefore, a machine with the multi-functions of arc welding
and cutting can be developed. The secondary side of high frequency transformer can be
shifted to output full-wave converter in arc welding, through which high current and low
voltage can be obtained. It can be switched to output full-bridge converter in cutting, through
which high voltage and low current can be obtained. Changing output converter modemeans
changing the voltage ration of the high frequency transformer, which can meet the two work
situations only by shifting a switch (Zhu et al., 2007).
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Fig. 1. The topology of the soft-switch arc welding/cutting power supply
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Fig. 2. Arc welding/cutting external characteristics curve

The topology of the soft-switch arc welding/cutting power supply is shown in Fig.1. In
Fig.1, Q1,D1,C1 and Q2,D2,C2 are leading leg switches, Q3,D3,C3 and Q4,D4,C4 are lagging leg
switches, and ZVS is realized by paralleling capacitors to the switches and resonance inductor.
The topology shown in Fig.1 is mainly based on the following considerations: (1)The circuit is
simple, which can realize the 4 switches ZVSwithout any more switches, which are advantage
from the phase shift control method, and which changes the output voltage through changing
phase shift angle.
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(2)PWM (pulse width modulation) control strategy is adopted. Switching frequency is
constant, so the designs of high frequency transformer and filtering links of input and output
are easy.
In Fig.1, shifting the switch point to the c point means that the secondary side of high
frequency transformer constructs output full-wave converter when working in arc welding.
Shifting the switch point to the d point means that the secondary side of high frequency
transformer constructs output full-bridge converter when working in cutting. A separate pilot
arc circuit is in series to the main circuit in cutting, which can be started by the cutting gun.
The characteristic of phase-shift full-bridge soft switching power source is that the circuit
structure is simple, compared with hard switching power source, only one resonant inductor
is added which can make the four switches in the circuit work to realize ZVS.

2.2 The external characteristics of arc welding/cutting power supply
Arc welding/cutting power source has two working modes which alternate when arc
welding/cutting power source is under work. One is constant-voltage control in the
no-loaded mode while the other is working as constant-current source when loaded. Arc
welding/cutting power source with good performance requires that the alteration between
the two modes can be as fast as possible. As shown in Fig.2, if the external characteristic curve
is steeper, the performance is better (Zheng et al., 2004). There, Vo is the output voltage and Io
is the output current.

3. Sliding mode control for arc welding/cutting power supply

Block diagram of converter system is shown in Fig.3. This paper selects two digital loop
alternate control strategy (G.R.Zhu et al., 2007). Fig.3 shows that the digital system includes
two control loops, one is current loop, and the other is voltage loop. Current loop samples
from output current, and the sampling signal is processed by TMS320LF2407 DSP chip to get
inverse feedback signal for the current digital regulator. The voltage loop samples from the
output voltage, and the sampling signal is also processed by the DSP chip to get the inverse
voltage feedback signal for the voltage digital regulator. The output voltage and current of
the proposed converter are sensed by sensors and converted by A/D of DSP as feedback after
being filtered by digital low pass filter. According to the basic characteristics of arc welding
and cutting, from no-load to load, current is detected and it is expected that building current
quickly with appropriate current overshoot to pilot arc easily and no steady-state error on
work process, PID control is more suitable for this case; from load to no-load, voltage is
detected and it is expected that building voltage quickly with small voltage overshoot, PID
control has contradictory between the small overshoot and the fast response time, namely,
overshoot will be increased due to fast response, which should be avoided in the voltage
loop. Thus, a new control method is needed to solve voltage loop problem. Because of its
good dynamic characteristic and small overshoot, sliding mode control can be applied in this
field.

3.1 The fundamental principle of sliding mode Control
Sliding mode control is a control method in changing structure control system. Compared
with normal control, it has a switching characteristic to change the structure of the systemwith
time. Such characteristic can force system to make a fluctuation with small amplitude and
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Vin

TMS320LF2407A DSP

Fig. 3. Block diagram of converter system

high frequency along state track under determinate trait which can also be called as sliding
mode movement. System under sliding mode has good robustness because the sliding mode
can be designed and it has nothing to do with parameters and disturbances of the system.
Theoretically speaking, sliding mode control has better robustness compared with normal
continuous system, but it will result in fluctuation of the system due to the dis-continuousness
of the switching characteristic. This is one of the main drawbacks of the sliding mode control
and can’t be avoiding as the switching frequency cannot be infinite. However, such effect can
be ignored because high accuracy of voltage control is not required in arc welding/cutting
power source.

3.2 The sliding mode digital control of phase shift full bridge
As the structure of phase-shift full-bridge main circuit is different when the switches are
at different on-off state, it is suitable to use sliding mode control. Traditional sliding
mode control is realized by hysteresis control, owing to the switching frequency is fixed in
phase-shift full-bridge circuit, duty cycle is used for indirectly control instead of frequency
directly using sliding mode control to control the switch. (Shiau et al., 1997)
When the switches Q1 and Q4 (or Q2 and Q3) in Fig.1 are switching on at the same time, its
equivalent circuit is shown in Fig.4(a).
When the switches Q1 and Q4 (or Q2 and Q3) in Fig.1 are not switching on at the same time,
its equivalent circuit is shown in Fig.4(b).
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(a) Q1Q4(or Q2Q3) is switched on
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(b) Q1Q4(or Q2Q3) is not switched on
no-synchronously

Fig. 4. The equivalent circuit of PS-FB-ZVS
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Set inductance current and capacitance voltage as variables, by using state-space average
method, the equation of phase-shift full-bridge is:

⎧
⎪⎨
⎪⎩

i̇L = − 1
L
vc +

1
L
dvi

v̇c =
1
C
iL − 1

RLC
vc

(1)

where d is duty cycle.
Choose voltage error as the state variable for the system:

e = vc − vre f (2)

Then,

de/dt = v̇c =
1
C
iL − 1

RLC
vc (3)

Besides choose the switch function:

S = de/dt+ ke (4)

Take the Equation 2, Equation 3 into Equation 4, then can get:

S =
1
C
iL − 1

RLC
vc + k(vc − vre f ) (5)

Ṡ =
1
LC

dvi + (
k
C
− 1

RLC2 )iL − (
k

RLC
− 1

R2
LC

2
+

1
LC

)vc (6)

Let
Ṡ = 0 (7)

then

deq = [(
kL
RL
− L

R2
LC

+ 1)vc − (kL− L
RLC

)iL]/vi (8)

Besides let d = deq + dnčňto meet the requirements of sliding mode control S× Ṡ < 0, then
S× 1

LC dnvi < 0, so:
dn = a− bsgn(S) (9)

where, sgn is the symbol function, a and b are selected by the implement systems. RL → ∞
when no-loadedčňwe can get:

deq = (vc − kLiL)/vi (10)

The block diagram of phase-shift full bridge SMC is shown in Fig.5.
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Fig. 5. Phase-shift full-bridge SMC chart
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3.3 Digital control system structure and phase shift realization principle
Digital control system of the soft-switch arc welding/cutting power supply is shown in Fig.3.
In this study, Digital Signal Processor (DSP) TMS320LF2407 provided by Texas Instruments
is selected for implementation because of its function and simple architecture (TI et al., 2000).
The features of this DSP are: A/D converter (10-bit), two event managers to generate PWM
signals, 4 timer/counter (16-bit). The core of the hardware system is DSP, around which the
circuits, which includes sampling circuit, protection circuit, DSP external circuit and drive
circuit, are designed in detail. The output voltage and current of the proposed converter are
sensed by sensors and converted by A/D of DSP as feedback after being filtered by digital
low pass filter.
As to full bridge phase shift circuit, the most important problem is how to create phase shift
pulse in the digital control system. A direct phase shift pulse method based on the DSP
symmetric PWM waveform generation with full compare units is applied. The method is
shown in Fig.6.

count cycle

1CMPR

1CMPR
2CMPR

2CMPR

period interrupt
time

underflow interrupt
time

dead band
dead
band

dead band
dead
band

phase shift
angle

Fig. 6. Direct phase shift pulse methods with DSP full compare units

In Fig.6, the direct phase shift pulse method with DSP full compare units is that the two full
compare units of the DSP Event Manager A (EVA) directly produce four PWM pulses. The
fundamental theory of phase shift angle is that there is a periodic delay time from the leading
leg drive to lagging leg drive. The two up/down switches drive pulses of the leading leg
are produced by the full compare unit 1, and the two up/down switches drive pulses of the
lagging leg are produced by the full compare unit 2. The up and down switching of each
leg drive pulses are reverse and between them exists the dead band. If the given data of
the leading leg register CMPR1 is fixed, the given data of phase shift angle register CMPR2
comes from full compare event, which can produce the lagging leg drive pulse. Therefore,
this method can realize 0o − 180o phase shift. The data of CMPR1 and CMPR2, which is the
compare register of the two full compare units, varies in the underflow interrupt and period
interrupt with the demand of the system regulator. The falling edge compare data is given
in the underflow interrupt, rising edge compare data is given in the period interrupt, and the
counter data is the pulse period.
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In the program, the control register is set by symmetric PWM waveform generation with full
compare units, Timer 1 must be put in the continuous up/down counting mode, and dead
band can be set directly through Dead-Band Timer Control Register (DBTCR). In a word, the
direct phase shift pulse method does not need more hardware to synthesize pulse (Kim et al.,
2001), so it is very simple, flexible, convenient and reliable.
When fault comes out, such as over voltage or over current for the output, over current for the
direct current bus, over voltage or under voltage for the input, overheating for the machine
and etc, the peripheral hardware generates signal to lock-out the pulse amplifying circuit
and the rectifier circuit, meanwhile generates PDPINTA signal to send to DSP within which
PDPINTA interrupt is generated to lock-out pulse.
The phase shift PWM waves generated by the EVA module of the DSP and regulator are
driven and amplified to control the power semiconductors IGBT of the high-frequency link
converter. Moreover, the system can control the arc welding/cutting voltage and current by
zero switching (Ben et al., 2005).

4. Experiment result

In this paper, a lab prototype of the 20W arc welding/cutting machine was built, and the
specifications and designed components values are summarized in Table 1

Vin(input voltage) DC 540V±20V
Po (output power) 20kVA

Unload voltage (arc welding) 70V
Output current (arc welding) 40A-500A (adjustable)

Unload voltage (cutting) 200V
Output current (cutting) 40A-100A (adjustable)

Switching frequency 20kHz
Controller TMS320LF2407

Resonance inductor Lr 16uH
Leading leg parallel capacitor 8nF
Lagging leg parallel capacitor 4.7nF

Table 1. Specifications and compents used in experiment

Different switch functions are selected on different operation condition. k = 1000 when
cutting, switch function S = de/dt + 1000e. It can be slided to sliding mode surface until
stable output when the output voltage is 10-240V. So, 10

330 ≤ deq ≤ 240
330 , then − 1

33 ≤ dn ≤ 9
33 ,

so dn = 4
33 − 5

33 sgn(S).
Similarly, k = 600 when arc welding, switch function S = de/dt + 600e. It can be slided
to sliding mode surface until stable output when the output voltage is 10-80V, then, dn =
5
16 − 6

16 sgn(S).
Fig.7(a) shows the output voltage with SMC to control the no-load voltage from load to
no-load mode when arc welding, while Fig.7(b) shows the wave with PI control is used from
load to no-load mode when arc welding. In Fig.7(a) and Fig.7(b), we can see that sliding
mode control can meet the requirement of fast voltage response and small voltage overshoot
than PI control. Although PI control can also decrease the voltage overshoot by adjusting
proportion factor, response time is affected, especially the regulation time increases from load
to no-loaded mode.
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(a) SMC voltage from load to no-load on
arc welding

(b) PI control voltage from load to
no-load on arc welding

(c) Synthetic control current from
no-load to load on cutting) is switched
on

(d) Synthetic voltage from no-load to
load on cutting

(e) Synthetic control current from load
to no-load on cutting

(f) Synthetic control voltage from load to
no-load on cutting

Fig. 7. The experiment waves of output voltage and current when arc welding or cutting

Based on the synthetic control of SMC and PI when the machine is used to cut 25mm thick
mild steel work piece, in which input voltage is 523V and output current is 100A, and
no-loaded voltage is 200V, the waveforms of the output voltage and output current are shown
in Fig.10. The output voltage and current waveforms in cutting process from no-load to load
shown in Fig.7(c)-Fig.7(f). In Fig.7(c)(d), at first voltage loop is running when the current is
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zero, then current increases after pilot arc, when current is bigger than some giving value,
current loop is running. There are some current overshoot with PI control in current loop,
which is advantage to pilot success, and no steady-state error of current, which is advantage
to steady arc welding/cutting process.In Fig.7(e)(f), the switch from load to no-load is quick
and no any overshoot based on SMC control. From Fig.7(a)(f), since the scope of adjustable
voltage is different, the k in sliding mode function is different, the speed of building voltage
also is different, thus k is the adjustable parameter according to different system in SMC.

5. Conclusion

Applying PI control in current loop, some current overshoot can be favor for pilot success
and there are not any current errors in arc welding/cutting process, which is advantage to
working stability. Applying Sliding Mode Control in voltage loop for arc welding/cutting
power supply can effectively decrease the overshoot of voltage loop without affecting the
response time of current loop of arc welding/cutting power supply. Not any overshoot in
SMC will decrease the stress of diode, which can decrease the cost of the power supply and
reduce the threaten of personal safety. The Sliding Mode Control proposed in this paper
has good dynamic performance and easily applied algorithm, and is very suitable for arc
welding/cutting power supply which requires good dynamic performance for the control
system. This paper provides a new idea to the control of arc welding/cutting power supply.
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1. Introduction 
Fuel Cells (FC) produce electrical energy from an electrochemical reaction between a 
hydrogen-rich fuel gas and an oxidant (air or oxygen) (Kishinevsky & Zelingher, 2003) 
(Larminie & Dicks, 2000). They are high-current, and low-voltage sources. Their use in 
embedded systems becomes more interesting when using storage energy elements, like 
batteries, with high specific energy, and supercapacitors (SC), with high specific power. In 
embedded systems, the permanent source which can either be FC’s or batteries must 
produce the limited permanent energy to ensure the system autonomy (Pischinger et al., 
2006) (Moore et al., 2006) (Corrêa et al., 2003). In the transient phase, the storage devices 
produce the lacking power (to compensate for deficit in power required) in acceleration 
function, and absorbs excess power in braking function. FC’s, and due to its auxiliaries, have 
a large time constant (several seconds) to respond to an increase or decrease in power 
output. The SCs are sized for the peak load requirements and are used for short duration 
load levelling events such as fuel starting, acceleration and braking (Rufer et al, 2004) 
(Thounthong et al., 2007). These short durations, events are experienced thousands of times 
throughout the life of the hybrid source, require relatively little energy but substantial 
power (Granovskii et al.,2006) (Benziger et al., 2006). 
Three operating modes are defined in order to manage energy exchanges between the 
different power sources. In the first mode, the main source supplies energy to the storage 
device. In the second mode, the primary and secondary sources are required to supply 
energy to the load. In the third, the load supplies energy to the storage device.  
We present in this work two hybrids DC power sources using SC as auxiliary storage 
device, a Proton Exchange Membrane-FC (PEMFC) as main energy source (Ayad et al., 
2010) (Becherif et al., 2010) (Thounthong et al., 2007) (Rufer et al., 2004). The difference 
between the two structures is that the second contains a battery DC link. A single phase DC 
machine is connected to the DC bus and used as load. The general structures of the studied 
systems are presented and a dynamic model of the overall system is given in a state space 
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model. The control of the whole system is based on nonlinear sliding mode control for the 
DC-DC SCs converter and a linear regulation for the FC converter. Finally, simulation 
results using Matlab are given.  

2. State of the art and potential application 
2.1 Fuel cells 
A. Principle 
The developments leading to an operational FC can be traced back to the early 1800’s with 
Sir William Grove recognized as the discoverer in 1839.  
A FC is an energy conversion device that converts the chemical energy of a fuel directly into 
electricity. Energy is released whenever a fuel (hydrogen) reacts chemically with the oxygen 
of air. The reaction occurs electrochemically and the energy is released as a combination of 
low-voltage DC electrical energy and heat.  
Types of FCs differ principally by the type of electrolyte they utilize (Fig. 1). The type of 
electrolyte, which is a substance that conducts ions, determines the operating temperature, 
which varies widely between types. 
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Fig. 1. Principle of acid (top) and alkaline (bottom) electrolytes fuel cells 

Proton Exchange Membrane (or “solid polymer”) Fuel Cells (PEMFCs) are presently the 
most promising type of FCs for automotive use and have been used in the majority of 
prototypes built to date.  
The structure of a cell is represented in Fig. 2. The gases flowing along the x direction come 
from channels designed in the bipolar plates (thickness 1-10 mm). Vapour water is added to 
the gases to humidify the membrane. The diffusion layers (100-500 µm) ensure a good 
distribution of the gases to the reaction layers (5-50 µm). These layers constitute the 
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electrodes of the cell made of platinum particles, which play the role of catalyst, deposited 
within a carbon support on the membrane. 
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Fig. 2. Different layers of an elementary cell 

Hydrogen oxidation and oxygen reduction: 

 
2

2 2

H 2H 2e anode
12H 2e O H O cathode
2

+ −

+ −

→ +

+ + →  (1) 

The two electrodes are separated by the membrane (20-200 µm) which carries protons from 
the anode to the cathode and is impermeable to electrons. This flow of protons drags water 
molecules as a gradient of humidity leads to the diffusion of water according to the local 
humidity of the membrane. Water molecules can then go in both directions inside the 
membrane according to the side where the gases are humidified and to the current density 
which is directly linked to the proton flow through the membrane and to the water 
produced on the cathode side. 
Electrons which appear on the anode side cannot cross the membrane and are used in the 
external circuit before returning to the cathode. Proton flow is directly linked to the current 
density: 

 F
iJ

H
=+

 
(2) 

where F is the Faraday’s constant. 
The value of the output voltage of the cell is given by Gibb’s free energy ∆G and is: 

 F.2
GVrev

Δ
−=  (3) 

This theoretical value is never reached, even at no load condition. For the rated current 
(around 0.5 A.cm-2), the voltage of an elementary cell is about 0.6-0.7 V.  
As the gases are supplied in excess to ensure a good operating of the cell, the non-consumed 
gases have to leave the FC, carrying with them the produced water. 
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Fig. 3. External and internal connections of a PEMFC stack 

Generally, a water circuit is used to impose the operating temperature of the FC (around 60-
70 °C). At start up, the FC is warmed and later cooled as at the rated current nearly the same 
amount of energy is produced under heat form than under electrical form. 
B. Modeling Fuel Cell  
The output voltage of a single cell VFC can be defined as the result of the following static and 
nonlinear expression (Larminie & Dicks, 2000): 

 concentohmactFC VVVEV −−−=  (4) 

where E is the thermodynamic potential of the cell and it represents its reversible voltage, 
Vact is the voltage drop due to the activation of the anode and of the cathode, Vohm is the 
ohmic voltage drop, a measure of the ohmic voltage drop associated with the conduction of 
the protons through the solid electrolyte and electrons through the internal electronic 
resistances, and Vconcent represents the voltage drop resulting from the concentration or mass 
transportation of the reacting gases. 
 

 
Fig. 4. A typical polarization curve for a PEMFC 
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In (4), the first term represents the FC open circuit voltage, while the three last terms 
represent reductions in this voltage to supply the useful voltage of the cell VFC, for a certain 
operating condition. Each one of the terms can be calculated by the following equations, 

 ( )
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Hence, iFC is the delivered current, i0 is the exchange current, A is the slope of the Tafel line, 
iLim is the limiting current, B is the constant in the mass transfer, in is the internal current and 
Rm is the membrane and contact resistances.  

2.2 Electric double-layer supercapacitors  
A. Principle 
The basic principle of electric double-layer capacitors lies in capacitive properties of the 
interface between a solid electronic conductor and a liquid ionic conductor. These properties 
discovered by Helmholtz in 1853 lead to the possibility to store energy at solid/liquid 
interface. This effect is called electric double-layer, and its thickness is limited to some 
nanometers (Belhachemi et al., 2000). 
Energy storage is of electrostatic origin, and not of electrochemical origin as in the case of 
accumulators. So, supercapacitors are therefore capacities, for most of marketed devices. 
This gives them a potentially high specific power, which is typically only one order of 
magnitude lower than that of classical electrolytic capacitors.  
 

porous insulating membrane

collector

collector

porous electrode

porous electrode

 
Fig. 5. Principle of assembly of the supercapacitors 

In SCs, the dielectric function is performed by the electric double-layer, which is constituted 
of solvent molecules. They are different from the classical electrolytic capacitors mainly 
because they have a high surface capacitance (10-30 μF.cm-2) and a low rated voltage limited 
by solvent decomposition (2.5 V for organic solvent). Therefore, to take advantage of electric 
double-layer potentialities, it is necessary to increase the contact surface area between 
electrode and electrolyte, without increasing the total volume of the whole. 
The most widespread technology is based on activated carbons to obtain porous electrodes 
with high specific surface areas (1000-3000 m2.g-1). This allows obtaining several hundred of 
farads by using an elementary cell. 
SCs are then constituted, as schematically presented below in Fig. 5, of: 
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- two porous carbon electrodes impregnated with electrolyte, 
- a porous insulating membrane, ensuring electronic insulation and ionic conduction 

between electrodes, 
- metallic collectors, usually in aluminium. 
B. Modeling and sizing of suparcpacitors 
Many applications require that capacitors be connected together, in series and/or parallel 
combinations, to form a “bank” with a specific voltage and capacitance rating. The most 
critical parameter for all capacitors is voltage rating. So they must be protected from over 
voltage conditions. The realities of manufacturing result in minor variations from cell to cell. 
Variations in capacitance and leakage current, both on initial manufacture and over the life 
of the product, affect the voltage distribution. Capacitance variations affect the voltage 
distribution during cycling, and voltage distribution during sustained operation at a fixed 
voltage is influenced by leakage current variations. For this reason, an active voltage 
balancing circuit is employed to regulate the cell voltage. 
It is common to choose a specific voltage and thus calculating the required capacitance. In 
analyzing any application, one first needs to determine the following system variables 
affecting the choice of SC, 
- the maximum voltage, VSCMAX 
- the working (nominal) voltage, VSCNOM 
- the minimum allowable voltage, VSCMIN 
- the current requirement, ISC, or the power requirement, PSC 
- the time of discharge, td 
- the time constant 
- the capacitance per cell, CSCcell  
- the cell voltage, VSCcell  
- the number of cell needs, n 
To predict the behavior of SC voltage and current during transient state, physics-based 
dynamic models (a very complex charge/discharge characteristic having multiple time 
constants) are needed to account for the time constant due to the double-layer effects in SC. 
The reduced order model for a SC cell is represented in Fig. 6. It is comprised of four ideal 
circuit elements: a capacitor CSCcell, a series resistor RS called the equivalent series resistance 
(ESR), a parallel resistor RP and a series stray inductor L of ∼nH. The parallel resistor RP 
models the leakage current found in all capacitors.  
This leakage current varies starting from a few milliamps in a big SC under a constant 
current as shown in Fig. 7.  
A constant discharging current is particularly useful when determining the parameters of 
the SC. 
Nevertheless, Fig. 7 should not be used to consider sizing SCs for constant power 
applications, such as common power profile used in hybrid source. 
 

RS

RP

L

CSCcell

VSCcell

RS

RP

L

CSCcell

VSCcell  
Fig. 6. Simple model of a supercapacitor cell 
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To estimate the minimum capacitance CSCMIN, one can write an energy equation without 
losses (RESR neglected) as, 

 ( ) tPVVC
2
1

SC
2
SCMIN

2
SCNOMSCMIN =−  (6) 

with 

 ( ) ( ) ( )titVtP SCSCSC =  (7) 
Then, 
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From (6) and (7), the instantaneous capacitor voltage and current are described as,  
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Since the power being delivered is constant, the minimum voltage and maximum current 
can be determined based on the current conducting capabilities of the SC. (6) and (7) can 
then be rewritten as, 
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Fig. 7. Discharge profile for a SC under constant current. 
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The variables VSCMAX and CSC are indeed related by the number of cells n. The assumption is 
that the capacitors will never be charged above the combined maximum voltage rating of all 
the cells. Thus, we can introduce this relationship with the following equations, 
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Generally, VSCMIN is chosen as VSCMAX /2, from (6), resulting in 75% of the energy being 
utilized from the full-of-charge (SOC1 = 100%). In applications where high currents are 
drawn, the effect of the RESR has to be taken into account. The energy dissipated Wloss in the 
RESR, as well as in the cabling, and connectors could result in an under-sizing of the number 
of capacitors required. For this reason, knowing SC current from (6), one can theoretically 
calculate these losses as,  
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To calculate the required capacitance CSC, one can rewrite (6) as, 

 ( ) lossSC
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From (6) and (13), one obtains 
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where X is the energy ratio. 
From the equations above, an iterative method is needed in order to get the desired 
optimum value. 
The differential capacitance can be represented by two capacitors: a constant capacitor C0 
and a linear voltage dependent capacitor kV0. k is a constant corresponding to the slope 
voltage. The SC is then modelled by: 
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Where 000 >+ kVC  
C. State of the art and potential application 
Developed at the end of the seventies for signal applications (for memory back-up for 
example), SCs had at that time a capacitance of some farads and a specific energy of about 
0.5 Wh.kg-1.  
                                                 
1 State Of Charge 
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High power SCs appear during the nineties and bring high power applications components 
with capacitance of thousand of farads and specific energy and power of several Wh.kg-1 
and kW.kg-1. 
In the energy-power plan, electric double layers SCs are situated between accumulators and 
traditional capacitors.  
Then these components can carry out two main functions: 
- the function "source of energy", where SCs replace electrochemical accumulators, the 

main interest being an increase in reliability, 
- the function "source of power", for which SCs come in complement with accumulators 

(or any other source limited in power), for a decrease in volume and weight of the 
whole system. 

 

 
Fig. 8. Comparison between capacitors, supercapacitors, batteries and Fuel cell 

2.3 State of the art of battery in electric vehicles 
An electric vehicle (EV) is a vehicle that runs on electricity, unlike the conventional vehicles 
on road today which are major consumers of fossil fuels like gasoline. This electricity can be 
either produced outside the vehicle and stored in a battery or produced on board with the 
help of FC’s.  
The development of EV’s started as early as 1830’s when the first electric carriage was 
invented by Robert Andersen of Scotland, which appears to be appalling, as it even precedes 
the invention of the internal combustion engine (ICE) based on gasoline or diesel which is 
prevalent today. The development of EV’s was discontinued as they were not very 
convenient and efficient to use as they were very heavy and took a long time to recharge.  
This led to the development of gasoline based vehicles as the one pound of gasoline gave 
equal energy as a hundred pounds of batteries and it was relatively much easier to refuel 
and use gazoline. However, we today face a rapid depletion of fossil fuel and a major 
concern over the noxious green house gases their combustion releases into the atmosphere 
causing long term global crisis like climatic changes and global warming. These concerns are 
shifting the focus back to development of automotive vehicles which use alternative fuels 
for operations. The development of such vehicles has become imperative not only for the 
scientists but also for the governments around the globe as can be substantiated by the 
Kyoto Protocol which has a total of 183 countries ratifying it (As on January 2009). 
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A. Batteries technologies 
A battery is a device which converts chemical energy directly into electricity. It is an 
electrochemical galvanic cell or a combination of such cells which is capable of storing 
chemical energy. The first battery was invented by Alessandro Volta in the form of a voltaic 
pile in the 1800’s. Batteries can be classified as primary batteries, which once used, cannot be 
recharged again, and secondary batteries, which can be subjected to repeated use as they are 
capable of recharging by providing external electric current. Secondary batteries are more 
desirable for the use in vehicles, and in particular traction batteries are most commonly used 
by EV manufacturers. Traction batteries include Lead Acid type, Nickel and Cadmium, 
Lithium ion/polymer , Sodium and Nickel Chloride, Nickel and Zinc. 
 

 Lead Acid Ni - Cd Ni - MH Li – Ion Li - polymer Na - NiCl2 Objectives 
Specific 
Energy 
(Wh/Kg) 

35 – 40 55 70 – 90 125 155 80 200 

Specific 
Power 
(W/Kg) 

80 120 200 260 315 145 400 

Energy 
Density 
(Wh/m3) 

25 – 35 90 90 200 165 130 300 

Cycle Life 
(No. of 
charging 
cycles) 

300 1000 600 + 600 + 600 600 1000 

Table 1. Comparison between different baterries technologies.  

The battery for electrical vehicles should ideally provide a high autonomy (i.e. the distance 
covered by the vehicle for one complete discharge of the battery starting from its potential) 
to the vehicle and have a high specific energy, specific power and energy density (i.e. light 
weight, compact and capable of storing and supplying high amounts of energy and power 
respectively). These batteries should also have a long life cycle (i.e. they should be able to 
discharge to as near as it can be to being empty and recharge to full potential as many 
number of times as possible) without showing any significant deterioration in the 
performance and should recharge in minimum possible time. They should be able to operate 
over a considerable range of temperature and should be safe to handle, recyclable with low 
costs. Some of the commonly used batteries and their properties are summarized in the 
Table 1. 
B. Principle  
A battery consists of one or more voltaic cell, each voltaic cell consists of two half-cells 
which are connected in series by a conductive electrolyte containing anions (negatively 
charged ions) and cations (positively charged ions). Each half-cell includes the electrolyte 
and an electrode (anode or cathode). The electrode to which the anions migrate is called the 
anode and the electrode to which cations migrate is called the cathode. The electrolyte 
connecting these electrodes can be either a liquid or a solid allowing the mobility of ions. 
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In the redox reaction that powers the battery, reduction (addition of electrons) occurs to 
cations at the cathode, while oxidation (removal of electrons) occurs to anions at the anode. 
Many cells use two half-cells with different electrolytes. In that case each half-cell is 
enclosed in a container, and a separator that is porous to ions but not the bulk of the 
electrolytes prevents mixing. The figure 10 shows the structure of the structure of Lithium–
Ion battery using a separator to differentiate between compartments of the same cell 
utilizing two respectively different electrolytes 
 

 
Fig. 9. Showing the apparatus and reactions for a simple galvanic Electrochemical Cell 
 

 
Fig. 10. Structure of Lithium-Ion Battery 
Each half cell has an electromotive force (or emf), determined by its ability to drive electric 
current from the interior to the exterior of the cell. The net emf of the battery is the 
difference between the emfs of its half-cells. Thus, if the electrodes have emfs E1 and E2, then 
the net emf is Ecell = E2- E1. Therefore, the net emf is the difference between the reduction 
potentials of the half-cell reactions. 
The electrical driving force or ∆VBat across the terminals of a battery is known as the terminal 
voltage and is measured in volts. The terminal voltage of a battery that is neither charging 
nor discharging is called the open circuit voltage and equals the emf of the battery. 
An ideal battery has negligible internal resistance, so it would maintain a constant terminal 
voltage until exhausted, then dropping to zero. If such a battery maintained 1.5 volts and 
stored a charge of one Coulomb then on complete discharge it would perform 1.5 Joule of 
work.  
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 Work done by battery (W) = - Charge X Potential Difference (16) 

 CoulombCharge Moles Electrons
Mole Electrons

=  (17) 

 nFEcellW −=  (18) 

Where n is the number of moles of electrons taking part in redox, F = 96485 coulomb/mole 
is the Faraday’s constant i.e. the charge carried by one mole of electrons.  
The open circuit voltage, Ecell can be assumed to be equal to the maximum voltage that can 
be maintained across the battery terminals. This leads us to equating this work done to the 
Gibb’s free energy of the system (which is the maximum work that can be done by the 
system) 

 nFEcellmaxWG −==Δ  (19) 
C. Model of battery  
Non Idealities in Batteries: Electrochemical batteries are of great importance in many 
electrical systems because the chemical energy stored inside them can be converted into 
electrical energy and delivered to electrical systems, whenever and wherever energy is 
needed. A battery cell is characterized by the open-circuit potential (VOC), i.e. the initial 
potential of a fully charged cell under no-load conditions, and the cut-off potential (Vcut) at 
which the cell is considered discharged. The electrical current obtained from a cell results 
from electrochemical reactions occurring at the electrode-electrolyte interface. There are two 
important effects which make battery performance more sensitive to the discharge profile: 
- Rate Capacity Effect: At zero current, the concentration of active species in the cell is 

uniform at the electrode-electrolyte interface. As the current density increases the 
concentration deviates from the concentration exhibited at zero current and state of 
charge as well as voltage decrease (Rao et al., 2005)  

- Recovery Effect: If the cell is allowed to relax intermittently while discharging, the 
voltage gets replenished due to the diffusion of active species thereby giving it more life 
(Rao et al., 2005) 

D. Equivalent electrical circuit of battery 
Many electrical equivalent circuits of battery are found in literature. (Chen at al., 2006) 
presents an overview of some much utilized circuits to model the steady and transient 
behavior of a battery. The Thevenin’s circuit is one of the most basic circuits used to study 
the transient behavior of battery is shown in figure 11. 
 

 
Fig. 11. Thevenin’s model 
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It uses a series resistor (Rseries) and an RC parallel network (Rtransient and Ctransient) to predict 
the response of the battery to transient load events at a particular state of charge by 
assuming a constant open circuit voltage [Voc(SOC)] is maintained. This assumption 
unfortunately does not help us analyze the steady-state as well as runtime variations in the 
battery voltage. The improvements in this model are done by adding more components in 
this circuit to predict the steady-state and runtime response. For example, (Salameh at al., 
1992) uses a variable capacitor instead of Voc (SOC) to represent nonlinear open circuit 
voltage and SOC, which complicates the capacitor parameter. 
 

 
Fig. 12. Circuit showing battery emf and internal resistance R internal 

However, in our study we are mainly concerned with the recharging of this battery which 
occurs while breaking. The SC coupled with the battery accumulates high amount of charge 
when breaks are applied and this charge is then utilized to recharge the battery. Therefore, 
the design of the battery is kept to a simple linear model which takes into account the 
internal resistance (Rinternal) of the battery and assumes the emf to be constant throughout 
the process (Figure. 12). 

3. Control of the hybrid sources based on FC, SCs and batteries  
3.1 Structures of the hybrid power sources 
As shown in Fig. 13, the first hybrid source comprises a DC link supplied by a PEMFC and 
an irreversible DC-DC converter which maintains the DC voltage VDL to its reference value, 
and a supercapacitive storage device, which is connected to the DC link through a current 
reversible DC-DC converter allowing recovering or supplying energy through SC.  
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Fig. 13. Structure of the first hybrid source 

The second system, shown in Fig. 14, comprises of a DC link directly supplied by batteries, a 
PEMFC connected to the DC link by means of boost converter, and a supercapacitive 
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storage device connected to the DC link through a reversible current DC-DC converter. The 
role of FC and the batteries is to supply mean power to the load, whereas the storage device 
is used as a power source: it manages load power peaks during acceleration and braking.  
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Fig. 14. Structure of the second hybrid source 

3.2 Problem formulation 
Both structures are supplying energy to the DC bus where a DC machine is connected. This 
machine plays the role of the load acting as a motor or as a generator when breaking. 
The main purpose of the study is to present a control technique for the two hybrid source 
with two approaches. Two control strategies, based on sliding mode control have been 
considered, the first using a voltage controller and the second using a current controller. The 
second aim is to maintain a constant mean energy delivered by the FC, without a significant 
power peak, and the transient power is supplied by the SCs. A third purpose consists in 
recovering energy throw the charge of the SC. 
After system modeling, equilibrium points are calculated in order to ensure the desired 
behavior of the system. When steady state is reached, the load has to be supplied only by the 
FC source. So the controller has to maintain the DC bus voltage to a constant value and the 
SCs current has to be cancelled. During transient, the power delivered by the DC source has 
to be as constant as possible (without a significant power peak), and the transient power has 
to be delivered through the SCs. The SCs in turn, recover their energy during regenerative 
braking when the load provides current. 
At equilibrium, the SC has to be charged and then the current has to be equal to zero.  

3.3 Sliding mode control of the hybrid sources 
Due to the weak request on the FC, a classical PI controller has been adapted for the boost 
converter. However, because of the fast response in the transient power and the possibility 
of working with a constant or variable frequency, a sliding mode control (Ayad et al., 2007). 
has been chosen for the DC-DC bidirectional SC converter. The bidirectional property 
allows the management of charge- discharge cycles of the SC tank. 
The current supplied by the FC is limited to a range [IMIN, IMAX]. Within this interval, the FC 
boost converter ensures current regulation (with respect to reference). Outside this interval, 
i.e. when the desired current is above IMAX or below IMIN, the boost converter saturates and 
the surge current is then provided or absorbed by the storage device. Hence the DC link 
current is kept equal to its reference level. Thus, three modes can be defined to optimize the 
functioning of the hybrid source: 
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- The normal mode, for which load current is within the interval [IMIN, IMAX]. In this mode, 
the FC boost converter ensures the regulation of the DC link current, and the control of 
the bidirectional SC converter leads to the charge or the discharge of SC up to a 
reference voltage level VSCREF, 

- The discharge mode, for which load power is greater than IMAX. The current reference of 
the boost is then saturated to IMAX, and the FC DC-DC converter ensures the regulation 
of the DC link voltage by supplying the lacking current, through SC discharge, 

- The recovery mode, for which load power is lower than IMIN. The power reference of the 
FC boost converter is then saturated to IMIN, and the FC DC-DC converter ensures the 
regulation of the DC link current by absorbing the excess current, through SC charge. 

A. DC-DC boost FC converter control principle  
Fig. 15 presents the synoptic control of the first hybrid FC boost. The FC current reference is 
generated by means of a PI voltage loop control on a DC link voltage and its reference:  

 ( ) ( )∫ −+−=
t
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With, kPF1 and kIF1 are the proportional and integral gains. 
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Fig. 15. Control of the FC converter 

The second hybrid source FC current reference *
FCI is generated by means of a PI current 

loop control on a DC link current and load current and the switching device is controller by 
a hysteresis comparator:  

 ( ) ( )∫ −+−=
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With, kPF2 and kIF2 are the proportional and integral gains. 
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Fig. 16. Control of the FC converter 

The switching device is controlled by a hysteresis comparator. 
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B. DC-DC Supercapacitors converter control principle  

To ensure proper functioning for the three modes, we have used a sliding mode control 
strategy for the DC-DC converter. Here, we define a sliding surface S, for the first hybrid 
source, as a function of the DC link voltage VDL, its reference *

DLV , the SCs voltage VSC, its 
reference *

SCV , and the SCs current ISC: 

 ( ) ( )121111 IIkVVkS SC
*

DLDL −⋅+−=  (22) 

with  

 ( ) ( )∫ −+−=
t

*
SCSCis

*
SCSCps dtVVkVVkI

0

11  (23) 

With, kps1 and kis1 are the proportional and integral gains.  
The FC PI controller ensures that VDL tracks *

DLV . The SC PI controller ensures that VSC 
tracks its reference *

SCV .  
k11, k21 are the coefficients of proportionality, which ensure that the sliding surface equal 
zero by tracking the SC currents to its reference I when the FC controller can’t ensures that 
VDL tracks *

DLV . 
In steady state condition, the FC converter ensures that the first term of the sliding surface is 
null, and the integral term of equation (23) implies *

SCSC VV = . Then, imposing S1 = 0 leads to 
ISC = 0, as far as the boost converter output current IDL is not limited. So that, the storage 
element supplies energy only during power transient and IDL limitation. 
For the second hybrid source, we define a sliding surface S2 as a function of the DC link 
current IDL, The load current IL, the SC voltage VSC, its reference *

SCV , and the SC current ISC: 

 ( ) ( )222122 IIkIIkS SCLDL −+−=  (24) 

with  

 ( ) ( )∫ −+−=
t

*
SCSCis

*
SCSCps dtVVkVVkI

0

222  (25) 

With, kps2 and kis2 are the proportional and integral gains.  
The FC PI controller ensures that IDL tracks IL. The SC PI controller ensures that VSC tracks its 
reference *

SCV .  
k12, k22 are the coefficients of proportionality, which ensure that the sliding surface equal 
zero by tracking the SC currents to its reference I when the FC controller can’t ensures that 
IDL tracks IL. 
In the case of a variable frequency control, a hysteresis comparator is used with the sliding 
surface S as input. In the case of a constant frequency control, the general system equation 
can be written as: 

 iiiiiii CUBXAX ξ+++=  (26) 

with i=1,2 
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With for the first system: 
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the sliding surface is then given by:  
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If we note:  

 [ ]2222122 0 kkkG −=  (30) 

the sliding surface is then given by:  

 2222 XGCS DL +ξ=  (31) 

In order to set the system dynamic, we define the reaching law:  

 ( )iiiii SsignKSS −λ−=  (32) 

with i=1,2 
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 0=iK            if iiS ε< . (33) 

and  

 iiii nK ελ=     if iiS ε> . (34) 

The linear term ( )XSiiλ−  imposes the dynamic to remain inside the error bandwidth εi. The 
choice of a high value of λi ( 2Cf≤ ) ensures a small static error when iiS ε< . The nonlinear 
term ( )ii Ssign.K−  permits to reject perturbation effects (uncertainty of the model, variations 
of the working conditions). This term allows compensating high values of error iiS ε>  due 
to the above mentioned perturbations. The choice of a small value of εi leads to high current 
undulation (chattering effect) but the static error remains small. A high value of ε obliges to 
reduce the value of λi to ensure the stability of the system and leads to higher static error. 
Once the parameters (λi, Ki, εi) of the reaching law are determined, it is possible to calculate 
the continuous equivalent control, which allows to maintain the state trajectory on the 
sliding surface. We use the equations (28), (27) and (29), we find for the first system: 

 ( ) { })S(signKXGXGXGCGXAGBGU refrefSC 111111111111111
1

111 −λ+λ−+−−= −  (35) 

Equations (26), (28) and (30) are used, we find for the second system: 

 ( ) [ ]{ }2222222222222
1

222 ξλ+ξ−−λ−−−= −
DLSC C)S(signKXGCGXAGBGU  (36) 

The control laws (35) and (36) contain the attractive and the equivalent controls. These 
equations (35) and (36) give for both hybrid sources the equation: 

 ( ) ( ) iiiiiiiiiiieqi GBGBAGBGBAA λ−−= −− 11  (37) 

The equation (27) allows finding poles of the systems during the sliding motion as a 
function of λi, k1i and k2i. The parameters kisi and kpsi are then determined by solving Si=0, 
equation justified by the fact that the sliding surface dynamic is hugely much greater than 
SC voltage variation. 

C. Stability 
Consider the following Lyapunov function: 

 2

2
1

ii SV =  (38) 

With S is the sliding surface, i=1,2. 
The derivative of the Lyapunov function along the trajectory of (15) is: 

 02 ≤−λ−== )S(signSKSSSV iiiiiiii  (39) 

With 0>λ ii K,  
Hence, the origin, with the sliding surface giving by (22) and (24), is globally asymptotically 
stable since the Lyapunov function (38) is radially unbounded and its derivative is strictly 
negative when 0≠iS  and 00 =⇔= ii SV . 
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3.4 Simulation results of the hybrid sources control 
The whole system has been implemented in the Matlab-Simulink Software with the 
following parameters associated to the hybrid sources:  
- FC parameters: PFC = 130 W. 
- DC link parameters: VDL= 24 V. 
- SC parameters: CSC = 3500/6 F, VV*

SC 15= .  
The results presented in this section have been carried out by connecting the hybrid source 
to a "RL, LL and EL" load representing a single phase DC machine. 
Figures 17 and 18 present the behavior of currents IDL, IL, ISC, and the DC link voltage VDL 
for transient responses obtained while moving from the normal mode to the discharge 
mode, using sliding mode control. The test is performed by sharply changing the e.m.f load 
voltage EL in the interval of t∈[1.5s, 5s]. The load current IL changes from 16.8A to 24A. The 
current load IL = 16.8A corresponds to a normal mode and the current load IL = 24A to a 
discharge mode. 
 

ISC

IDL

IL

ISCISC

IDLIDL

ILIL

 
Fig. 17. FC, SCs and load currents 
 

 
Fig. 18. DC link voltage 
At the starting of the system, only FC provides the mean power to the load. The storage 
device current reference is equal to zero, when we are in normal mode. In the transient state, 
the load current IL becomes lower than the DC link current IDL. The DC link voltage 
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reference is set at 24V. The DC link voltage tracks the reference well during the first second, 
after which, a very small overshoot is observed when the load current becomes negative. 
Then, the storage device current reference becomes negative because the controller 
compensates the negative load current value by the difference between the SC voltage and 
its reference. This is the recovering mode. After the load variation (t > 5s), the current in the 
DC link becomes equal to the load current. The SC current ISC becomes null. 
 

IL

IDL 

 
Fig. 19. Load and DC link currents 
 

ISC 

IB 

 
Fig. 20. SC and batteries currents 
Figures 19, 20 and 21 present the behavior of currents IDL, IL, ISC, IB and the DC link voltage 
VDL for transient responses obtained for a transition from the normal mode to the discharge 
mode applying using sliding mode control. The test is performed by changing sharply the 
e.m.f load voltage EL in the interval of t∈[0.5s, 1.5s]. The load current IL changes from 16.8A 
to 25A. The current load IL = 16.8A corresponds to a normal mode and the current load  
IL = 25A to a discharge mode. 
At the starting of the system, only the FC provides the mean power to the load. The 
storage device current reference is equal to zero, we are in normal mode. In the transient 
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state, the load current IL became greater then the DC link current IDL. The storage device 
current reference became positive thanks to control function which compensates this 
positive value by the difference between the SC voltage and its reference. We are in 
discharging mode. After the load variation (t > 1.5s), the current in the DC link became 
equal to the load current. The SC current ISC became null. We have a small variation in the 
batteries currents. 
 

 
Fig. 21. DC link voltage 

3. Conclusion 
In this paper, the modeling and the control principles of two DC hybrid source systems have 
been presented. These systems are composed of a fuel cell source, SuperCapacitor source 
and with or without batteries on DC link. The state space models are given for both 
structures. These sources use the fuel cell as mean power source and supercapacitors as 
auxiliary transient power sources.  
For the two hybrid structures, Sliding Mode Control principles have been applied in order 
to obtain a robustness control strategy. The sliding surface is generated as a function of 
multiple variables: DC link voltage and current, supercapacitors current and voltage, Load 
current. 
Global asymptotic stability proofs are given and encouraging simulation results has been 
obtained. 
Many benefits can be expected from the proposed structures such as supplying and 
absorbing the power peaks by using supercapactors which also allows recovering energy.  
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1. Introduction

The doubly-fed induction generator (DFIG) is a wound-rotor electric machine on which
about 75% of the wind turbines installed nowadays are based. As sketched in Fig. 1,
when generating power, its stator is directly connected to the grid, while a back-to-back
double-bridge converter —comprising both the rotor- (RSC) and grid-side (GSC) converters—
interfaces its rotor with the grid, hence allowing the flow of slip power both from the grid
to the rotor —at subsynchronous speeds— and vice-versa —at supersynchronous speeds—
within a certain speed range.
Given that only the slip power has to be managed by the bidirectional rotor converter, it is
sufficient to size it so that it typically supports between 25% and 30% of the DFIG rated power
(Ekanayake et al., 2003; Peña et al., 1996). This is more than probably the main reason for the
success of the DFIG in the field of variable-speed wind generation systems.
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Fig. 1. Structure of a DFIG-based wind turbine

Standard field oriented control (FOC) schemes devised to command wind turbine-driven
DFIGs comprise proportional-integral (PI)-controlled cascaded current and power loops,
which require the use of an incremental encoder (Tapia et al., 2003). Although stator-side
active and reactive powers can be independently governed by adopting those control
schemes, the system transient performance degrades as the actual values of the DFIG
resistances and inductances deviate from those based on which the control system tuning
was carried out during commissioning (Xu & Cartwright, 2006). In addition, the optimum
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power curve tracking achievable using PI-based control schemes shows a considerable room
for improvement. Even if feedforwarddecoupling control terms are traditionally incorporated
to enhance the closed-loop DFIG dynamic response, they are extremely dependent on DFIG
parameters (Tapia et al., 2006; Xu & Cartwright, 2006).
In this framework, alternative high dynamic performance power control schemes for DFIGs
are being proposed, among of which a strong research line focuses on the so-called direct
power control (DPC) (Xu & Cartwright, 2006; Zhi & Xu, 2007). Several others explore the
alternative of applying sliding-mode control (SMC), both standard —first-order— (Beltran
et al., 2008; Susperregui et al., 2010), and higher-order (Beltran, Ahmed-Ali & Benbouzid,
2009; Beltran, Benbouzid & Ahmed-Ali, 2009; Ben Elghali et al., 2008).
Moreover, since, as already mentioned, the back-to-back rotor converter is sized to manage a
slip power up to 25% or 30% of the wind generator rated power, DFIGs are kept connected
to the grid provided that their rotational speed remains within a certain range. Accordingly,
connection of DFIGs to the grid is only accomplished if the wind is strong enough to extract
energy from it profitably. In particular, the four-pole 660-kW DFIG considered in this chapter
is not connected to the grid until its rotational speed exceeds the threshold value of 1270 rpm.
Yet, connecting the DFIG stator to the grid is not straightforward. In fact, although
wind-turbine-driven DFIGs are asynchronous machines, owing to the double-bridge rotor
converter managing the slip power, they behave as real synchronous generators. Accordingly,
prior to connecting the stator of a DFIG to the grid, the voltage induced at its stator terminals
must necessarily be synchronized to that of the grid.
However, even though control of wind turbine-driven DFIGs is a topic extensively covered
in the literature, not many contributions outline or describe in some detail possible strategies
for smooth connection of DFIGs to the grid. So far, the synchronization problem has been
approached from different viewpoints, hence giving rise to alternative methods, as open-loop
stator voltage control (Peña et al., 2008), closed-loop regulation of rotor current (Peresada et al.,
2004; Tapia et al., 2009), and phase-locked loop (PLL) (Abo-Khalil et al., 2006; Blaabjerg et al.,
2006) or even direct torque control (DTC) of the voltage induced at the open stator (Arnaltes
& Rodríguez, 2002).
Considering those precedents, together with the robustness and tracking ability naturally
conferred by SMC, both a first-order and a higher-order sensorless SMC algorithms, conceived
to command the RSC feeding the rotor of a DFIG, are described and evaluated in this chapter.
Those two algorithms are not only aimed at governing active and reactive power exchange
between the DFIG stator and the grid, but also at ensuring the synchronization required for
smooth connection of the DFIG stator to the grid.
The chapter is organized as follows. Given that the DFIG exhibits different dynamics
depending on whether its stator is connected to the grid or not (Tapia et al., 2009), the
mathematical model corresponding to each of those two operating conditions is first briefly
presented. Conditions to reach synchronization are also provided. After selection of
the switching functions associated, respectively, to the power control and synchronization
objectives, a global first-order sliding-mode control (1-SMC) algorithm, based on Utkin’s
research work on various other types of electric machines (Utkin et al., 1999; Utkin, 1993;
Yan et al., 2000), is described in detail. Stability analyses are also provided for both the power
control and synchronization operation regimes. An overall second-order sliding-mode control
(2-SMC) algorithm, alternative to the previous one, is next presented. Special attention is paid
to the derivation of effective tuning equations for all its gains and constants. The practical
issue related to bumpless transition between the controllers in charge of synchronization
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and power control, at the instant of connecting the DFIG stator to the grid, is then tackled.
Adaptation of the model reference adaptive system (MRAS) observer put forward in (Peña
et al., 2008), so that it remains valid for sensorless control during synchronization, is also
dealt with. Sensorless versions of the two SMC algorithms proposed are evaluated via
real-time hardware-in-the-loop (HIL) emulation over a virtual 660-kW DFIG prototype. The
chapter finishes with a conclusion section, devoted to analyze the results arising from the HIL
emulation tests carried out.

2. Review of DFIG model and grid synchronization

Focused on a 660-kW DFIG, the main objective of the two alternative versions of the
control system presented along this chapter consists in succeeding in the achievement of the
maximum active power the machine is able to generate at each rotational speed; i.e., to track
the DFIG optimum power curve. As a secondary goal, but still essential from the point of
view of the electricity supply quality, the reactive power the machine generates or absorbs
from the grid is also managed.
Before raising the modelling of the machine, and, to get ride of misunderstandings due to the
diverse nomenclature used to identify the reference frames taking part in FOC, Fig. 2 presents
the terminology that is going to be adopted hereafter. It can be observed that the stator direct
and quadrature axes are represented as sD and sQ, respectively, and that the rotor reference
frame, which forms the θr turning angle with respect to sD axis, is denominated rα-rβ. Since
the machine is going to be rotor-side controlled, the magnitudes will be referred to a frame,
labeled as x-y, whose direct axis is aligned with the stator flux, �ψs —and, therefore, with the
stator magnetizing current,��ms. The latter reference frame is turned ρs with respect to the
sD-sQ plane.
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Fig. 2. Stator-flux-oriented reference frame

When connected to the grid, the rotor-side-voltage generator model regarding the
stator-flux-oriented reference frame—x-y—may be expressed as (Tapia et al., 2009; Vas, 1998)

vrx = Rrirx + L′r
dirx
dt

+
Lm
Ls

d|�ψs|
dt

− ωslL
′
riry (1)

vry = Rriry + L′r
diry
dt

+ ωsl
Lm
Ls

|�ψs| + ωslL
′
rirx, (2)

where vrx and vry are the components of the rotor voltage, irx and iry represent the rotor
currents, and ωsl = ωms − ωr stands for the slip frequency between the rα and x axes. Rr, Ls
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and Lm denote the rotor resistance, and the stator and magnetizing inductances, respectively.
Finally, L′r = σLr symbolizes the transient inductance of the rotor, where σ = 1− L2m/(LsLr)
is the total leakage factor.
Taking into account that power generation is not profitable at low speeds —less than 1270
rpm in this particular case—, the generator will not be connected to the grid until this
threshold value is exceeded. Therefore, a new "grid-non-connected" state appears where the
machine dynamic behaviour differs from that in which its stator is connected to the grid, and,
consequently, the model changes. Moreover, the transition between the disconnected and
connected states is not trivial, since the grid voltage and that induced at the open stator of the
DFIGmay presentmagnitude and/or phase differences. At this point, aiming at removing the
risk of short circuit, it can be taken advantage of a properly controlled "grid-non-connected"
state, turning it into a synchronization stage.
Let a new x′-y′ reference frame be defined when the stator is disconnected from the grid,
where, as shown in Fig. 3, its y′ quadrature axis and the grid voltage space-phasor are
collinear. Moreover, assuming steady-state regime, and, if rotor current is stable, it can be
demonstrated (Tapia et al., 2009) that the stator flux and voltage space-vectors are collinear to
x and y axes, respectively; i.e., �ψs⊥�vs.
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Fig. 3. New reference frame for synchronization

Bearing in mind that stator current is null when disconnected from the grid, the new
open-stator model, expressed according to the x′-y′ reference frame, arises (Tapia et al., 2009):

vrx′ = Rrirx′ + Lr
dirx′
dt

− ωslLriry′ → dirx′
dt

=
vrx′
Lr

− Rr

Lr
irx′ + ωsliry′ (3)

vry′ = Rriry′ + Lr
diry′

dt
+ ωslLrirx′ →

diry′

dt
=

vry′

Lr
− Rr

Lr
iry′ − ωslirx′ . (4)

As evidenced in Fig. 3, synchronization may be achieved if x-y and x′-y′ reference frames are
aligned. However, for a complete match-up, the grid and stator voltage space-vectors must
be not only collinear but also identical in magnitude. The two conditions are satisfied if the
following rotor current values are achieved (Tapia et al., 2009):

irx′ re f =

∣∣∣�vgrid
∣∣∣

ωsLm
; iry′ re f = 0, (5)

and, consequently, synchronization is ensured; i.e.:

irx = irx′ =

∣∣∣�vgrid
∣∣∣

ωsLm
; iry = iry′ = 0; ρs = ρ′s. (6)
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Furthermore, if the current values presented in (6) are substituted into the stator-side reactive
and active power expressions given next (Vas, 1998):

Qs =
3
2
|�vs|
Ls

(|�ψs| − Lmirx); Ps = − 3
2
Lm
Ls

|�vs|iry, (7)

it follows that, at the instant of the connection, zero power-exchange is achieved.
For the sake of a proper performance of the whole system, each state must be commanded
with its own controller. Moreover, the transition between the two states must carefully be
followed up, depending on the control strategy being applied, in order to achieve a bumpless
connection. This aspect will be thoroughly described in a later section.

3. Sensorless sliding-mode control arrangement for the DFIG

Aiming to track the optimum power curve of the DFIG, sliding-mode control theory has
been adopted, which provides the system with superior tracking ability and high robustness
despite uncertainties or parameter variations. The basis of SMC is the judicious election of a
switching variable, which usually depends on a linear combination of the error of the variable
to be commanded and its subsequent time derivatives. Here, the proposed switching variables
for optimum power control —stator connected to the grid— are

sQs = eQs + cQ
∫

eQsdt (8)

sPs = ePs + cP
∫

ePsdt, (9)

where eQs = Qs re f −Qs and ePs = Ps re f − Ps represent de errors in reactive and active powers,
respectively, and the integral terms, weighted by cQ and cP positive constants, are added for
steady-state response improvement (Utkin et al., 1999).
Examining the set-points proposed in (5), it can be derived that rotor current regulation must
be carried out if synchronization is required. Therefore, when the stator is disconnected from
the grid, and, similarly to the previous case, the following switching functions are suggested:

sirx′ = eirx′ + cx′
∫

eirx′ dt (10)

siry′ = eiry′ + cy′
∫

eiry′dt, (11)

where eirx′ = irx′ re f − irx′ and eiry′ = iry′ re f − iry′ represent the errors in irx′ and iry′ ,
respectively, and crx′ and cry′ are positive constants.
The switching variable defines the relative degree of a system, and, as a result, the order of the
applicable SMC (Levant, 1993). As the system is of first-order relative degree in both states,
connected and disconnected from the grid, it may be commanded applying 1-SMC or 2-SMC
(Bartolini et al., 1999). The design of the two controllers is detailed in subsequent sections.

3.1 First-order sliding-mode control
In this section, a 1-SMC scheme is proposed. Due to the different dynamic behaviours
presented by the DFIG when disconnected or connected to the grid, a different DFIG model is
considered to conceive the control of each of those two cases, and a first-order sliding-mode
controller is accordingly synthesized for each of them.
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In particular, the 1-SMC applied is that based on V. I. Utkin’s researchwork (Utkin et al., 1999;
Utkin, 1993; Yan et al., 2000), which sets out the following: most of the electrical systems must
modulate the control signals in order to command the transistors’ gates of their converters; so,
why not directly generate those gating signals thus eluding the use of pulse-widthmodulation
(PWM) or space-vector modulation (SVM) techniques? (Yan et al., 2008) This theory fits
perfectly the present case, in which controllers for the RSC of the back-to-back configuration
are designed for the two possible connection states of the DFIG.
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Fig. 4. Rotor-side converter scheme

Depending on whether or not the DFIG stator is connected to the grid, its model and
controllers do vary, but the RSC to be commanded, displayed in Fig. 4, remains obviously
the same. Analyzing this scheme (Utkin et al., 1999), it is possible to find a link between:

• the signals generated by controllers based on a synchronous frame, vrx and vry, and those
between the midpoints of the converter legs and the DC link, vraN, vrbN and vrcN:

Vxy︷ ︸︸ ︷[
vrx
vry

]
=

D︷ ︸︸ ︷[
cos ρ cos(ρ − 2π

3 ) cos(ρ + 2π
3 )

− sin ρ − sin(ρ − 2π
3 ) − sin(ρ + 2π

3 )

]
Vabc︷ ︸︸ ︷⎡

⎣
vraN
vrbN
vrcN

⎤
⎦ . (12)

If the opposite relation is needed, the inverse of D matrixmust exist. But, as it is not square,
Moore-Penrose pseudo-inverse concept (Utkin et al., 1999) may be used to calculate its
inverse, D+ = DT(DDT)−1, resulting the previous matrix expression in:

⎡
⎣
vraN
vrbN
vrcN

⎤
⎦ =

D+

︷ ︸︸ ︷⎡
⎣

cos ρ − sin ρ

cos(ρ − 2π
3 ) − sin(ρ − 2π

3 )
cos(ρ + 2π

3 ) − sin(ρ + 2π
3 )

⎤
⎦
[
vrx
vry

]
, (13)

where ρ = ρs − θr.

• the voltages vraN, vrbN and vrcN, and the transistors’ gating signals, sw1, sw2, sw3, sw4, sw5
and sw6:

sw1 = 0.5(1+ vraN/u0) sw4 = 1− sw1
sw2 = 0.5(1+ vrbN/u0) sw5 = 1− sw2
sw3 = 0.5(1+ vrcN/u0) sw6 = 1− sw3

. (14)

The following sections describe the design of the control scheme for the cases mentioned
above: DFIG connected to and disconnected from the grid.
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3.1.1 DFIG connected to the grid —Optimum power generation
Once synchronization is completed and the DFIG is connected to the grid, it is going to be
commanded applying the following multivariable control law, in order to achieve optimum
power generation:

Vabc = −u0sgn(S), (15)

where S =
[
s1 s2 s3

]T contains the switching variable expressions represented in a-b-c
three-phase reference frame. Note that, as the system to be controlled presents negative gain,
that of the control law must also be negative if stability is pursued.
Aiming to ease the design of the controllers and, subsequently, to demonstrate the stability
of the closed-loop system, the model can be transferred to subspace SQP =

[
sQs sPs

]T, if the
time derivatives of (8) and (9) are taken, and making use of (1)-(2):

ṠQP︷ ︸︸ ︷[
ṡQs

ṡPs

]
=

FQP︷ ︸︸ ︷[
F1
F2

]
+a

Vxy︷ ︸︸ ︷[
vrx
vry

]
(16)

where F1 = f (Q̇s re f , |�vs|, |�ψs|,Qs re f , irx,wsl, iry), F2 = f (Ṗs re f , |�vs|, |�ψs|,Ps re f , irx,wsl, iry),
and a = 3

2
Lm
LsL′r

|�vs|.
It is possible to relate the new model in (16) to the voltage signals between the midpoints of
the converter legs and the DC link, if D transformation matrix in (12) is applied

ṠQP = FQP +

Da︷︸︸︷
aD Vabc. (17)

It can be noticed that control signals are transformed from a-b-c to the stator-flux-oriented
reference frame by means of Da matrix. Now, it seems logical to derive the S in (15) by
arranging (8) and (9) in matrix format, SQP =

[
sQs sPs

]T, and then transforming SQP by
means of D+

a :
S = D+

a SQP. (18)

This allows obtaining the three-phase control signals as:

Vabc = u0

⎡
⎣

sgn(sPs sin ρ − sQs cos ρs)
sgn(sPs sin(ρ − 2π

3 ) − sQs cos(ρ − 2π
3 ))

sgn(sPs sin(ρ + 2π
3 ) − sQs cos(ρ + 2π

3 ))

⎤
⎦ , (19)

where 1/a constant should appear multiplying the terms inside every sgn function. However,
as its value is always positive, it does not affect the final result, and this is the reason why it
has been removed from (19). To conclude, the transistor gating signals are achieved just by
replacing (19) in (14).
Due to the discontinuous nature of the generated command signals —which are in fact the
transistors’ gating signals—, a bumpless transition between synchronization and optimum
generation states takes place spontaneously, without requiring the use of further control
techniques, as that proposed in (Tapia et al., 2009).
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3.1.1.1 Stability proof

In order to confirm that the designed control signals assure the zero-convergence of the
switching variables, the following positive-definite Lyapunov function candidate is proposed:

V =
1
2

ST
QPSQP, (20)

and, as it is well-known, its time derivative must be negative-definite:

V̇ =
1
2

(
ṠT
QPSQP + ST

QPṠQP

)
= ST

QPṠQP < 0. (21)

Considering (17) and (18), the Lyapunov function time derivative can be rewritten as:

V̇ = STF − 4
9
a2u0

⎡
⎣
s1
s2
s3

⎤
⎦
T ⎡
⎣
sgn(s1)− 0.5sgn(s2) − 0.5sgn(s3)
sgn(s2)− 0.5sgn(s3) − 0.5sgn(s1)
sgn(s3)− 0.5sgn(s1) − 0.5sgn(s2)

⎤
⎦ , (22)

where F = DT
a FQP = [F∗1 F∗2 F∗3 ]T.

Taking into account that the elements of Vabc will never coincide in sign at every moment, nor
will S components, as it can be inferred from (15). Therefore, sgn(sl) �= sgn(sm) = sgn(sn),
where l �= m �= n, for l,m, n ∈ {1, 2, 3}. Let l = 1, m = 2 and n = 3; moreover, suppose that
sgn(s1) = +1 �= sgn(s2) = sgn(s3), then (22) could be transformed into:

V̇ = s1F
∗
1 + s2F

∗
2 + s3F

∗
3︸ ︷︷ ︸

p

− 4
9
a2u0 (2|s1| + |s2| + |s3|)

︸ ︷︷ ︸
q

. (23)

If V̇ < 0 must be guaranteed, it can be stated that |q| > |p|. Furthermore, if the most restrictive
case is considered, the following condition must be derived:

4
9
a2u0 (2|s1| + |s2| + |s3|) > |s1||F∗1 | + |s2||F∗2 | + |s3||F∗3 |. (24)

Comparing each accompanying term of |s1|, |s2| and |s3|, u0 can be fixed by guaranteing that

u0 >
9
4a2

max
( |F∗1 |

2
, |F∗2 |, |F∗3 |

)
(25)

is satisfied. Nevertheless, bearing in mind the remaining signs combinations between
switching functions s1, s2 and s3, and taking into account the most demanding case, the above
proposed condition turns out to be:

u0 >
9
4a2

max (|F∗1 |, |F∗2 |, |F∗3 |) . (26)

Provided that the controller supplies the convenient voltage, derived from (26), the system is
robust even in the presence of disturbances, guarantying thus the asymptotic convergence of
sQs and sPs to zero. (26) presents a very conservative condition, but, in practice, a lower value
of u0 is usually enough to assure the stability of the whole system.
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3.1.2 DFIG disconnected from the grid —Synchronization stage
When rotor speed-threshold is achieved, the control system activates the synchronization
stage. As mentioned before, in order to avoid short circuit, the goal is to match the stator
and grid voltages in magnitude and phase by requesting the reference values presented in (5).
Let the same multivariable control law structure exposed in (15) be employed, considering,
of course, the new subspace where it must be applied. Combining (3) and (4) with the
time derivatives of (10) and (11), the model can be transferred to the above-mentioned new

subspace Sx′y′ =
[
sirx′ siry′

]T
:

Ṡx′y′︷ ︸︸ ︷[
ṡirx′
ṡiry′

]
=

Mx′y′︷ ︸︸ ︷[
M1
M2

]
+b

Vx′y′︷ ︸︸ ︷[
vrx′
vry′

]
, (27)

where M1 = f (i̇rx′ re f , irx′ re f , irx′ ,wsl, iry′), M2 = f (i̇ry′ re f , iry′ re f , iry′ ,wsl, irx′), and
b = −1/Lr.

Following a similar procedure to that presented in 3.1.1, the switching variables referred to
a-b-c reference frame will be obtained as:

S = D+
b Sx′y′ , (28)

where D+
b is theMoore-Penrose pseudo-inverse ofDb = bD. Substituting (28) in the proposed

control law (15), the three-phase command signals to be generated turn out to be:

Vabc=u0

⎡
⎢⎣

sgn(sirx′ cos ρ′ − siry′ sin ρ′)
sgn(sirx′ cos(ρ′ − 2π

3 ) − siry′ sin(ρ′ − 2π
3 ))

sgn(sirx′ cos(ρ′ + 2π
3 ) − siry′ sin(ρ′ + 2π

3 ))

⎤
⎥⎦ , (29)

where ρ′ = ρ′s − θr. The gating signals should easily be achieved by replacing (29) in (14).

3.1.2.1 Stability proof

Analogous to the case in 3.1.1.1, the asymptotic zero-convergence of switching functions is
assured if the following condition is accomplished:

u0 >
9
4b2

max (|M∗
1 |, |M∗

2 |, |M∗
3 |) , (30)

where M = DT
b Mx′y′ = [M∗

1 M∗
2 M∗

3 ]
T, and the positive-definite Lyapunov function candidate

is selected as:
V =

1
2

ST
x′y′Sx′y′ . (31)

3.2 Higher-order sliding-mode controller
The proposed structure based on 1-SMC leads to a variable switching frequency of the RSC
transistors (Susperregui et al., 2010), which may inject broadband harmonics into the grid,
complicating the design of the back-to-back converter itself, as well as that of the grid-side
AC filter (Zhi & Xu, 2007). As an alternative to the 1-SMC, higher-order sliding-mode control
(HOSMC) could be adopted. In particular, and owing to the relative order the systempresents,
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a 2-SMC realization, known as the super-twisting algorithm (STA), may be employed (Bartolini
et al., 1999; Levant, 1993). The control signal comprises two terms; one guaranteing that
switching surface s = 0 is reached in finite time, and another related to the integral of the
switching variable sign. Namely,

u = −λ|s|ρsgn(s) − w
∫
sgn(s)dt, (32)

where ρ = 0.5 assures a real second-order sliding-mode. This technique gives rise to a
continuous control signal, which not only alleviates or completely removes the "chatter" from
the system, but must also be modulated. To this effect, SVM may be applied, therefore
obtaining a fixed switching frequency which results in elimination of the above-mentioned
drawback.
As previously remarked, two controllers must be designed in order to command the
performance of the DFIG when connected and disconnected from the grid.

3.2.1 DFIG connected to the grid —Optimum power generation
Considering the time derivatives of (8) and (9) together with expressions (3), (4) and (7), it
turns out that

ṡQs
= Q̇s re f − 3

2
1
Ls

|�vs|
[
cQ|�ψs| +

(
Rr

L′r
− cQ

)
Lmirx − ωslLmiry

]
+ cQQs re f +

+
3
2

Lm
LsL′r

|�vs|vrx (33)

ṡPs = Ṗs re f +
3
2
Lm
Ls

|�vs|
[(

cP − Rr

L′r

)
iry − ωslirx − ωsl

Lm
LsL′r

|�ψs|
]

+ cPPs re f +

+
3
2

Lm
LsL′r

|�vs|vry, (34)

where d|�ψs|
dt has been neglected due to the fact that the DFIG is grid connected. Aiming to track

the optimum power curve, the voltage to be applied to the rotor may be derived according to
control law

vrx = vrxST + vrxeq ; vry = vryST + vryeq , (35)
where the terms with subscript ‘ST’ are computed, through application of the STA, as:

vrxST =
2
3

LsL′r
|�vs|Lm

[
−λQ|sQs |0.5sgn(sQs)− wQ

∫
sgn(sQs)dt

]
(36)

vryST =
2
3

LsL′r
|�vs|Lm

[
−λP|sPs |0.5sgn(sPs)− wP

∫
sgn(sPs)dt

]
(37)

with λQ, wQ, λP and wP being positive parameters to be tuned. The gain premultiplying
the algorithms —the inverse of that affecting control signal in (33) and (34)— is exclusively
applied for assisting in the process of tuning the foregoing parameters. The addends with
subscript ‘eq’ in (35), which correspond to equivalent control terms, are derived by letting
ṡPs = ṡQs = 0 (Utkin et al., 1999). As a result,

vrxeq = − 2
3

LsL′r
|�vs|Lm

[
Q̇s re f + cQ(Qs re f −Qs)

]
+ Rrirx − L′rωsliry (38)

vryeq = − 2
3

LsL′r
|�vs|Lm

[
Ṗs re f + cP(Ps re f − Ps)

]
+ Rriry +

Lm
Ls

ωsl|�ψs| + L′rωslirx. (39)
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It should be noted that sliding regime in manifold sPs = sQs = ṡPs = ṡQs = 0 can also be
attained by applying only the control terms in (35) corresponding to the STA. Accordingly,
the equivalent control terms in (38) and (39) are not strictly necessary, but, once included, the
more accurately they are computed, the lower is the control effort let to be done by the STA.
Equivalent control terms are hence incorporated not only to improve the system transient
response (Rashed et al., 2005), but also to ease selection of constants cP and cQ, as well as
tuning of the STA λQ,P and wQ,P gains.
In effect, substituting control law (35) into (33) and (34) produces:

ṡQs = −λQ
∣∣sQs

∣∣0.5 sgn(sQs

)− wQ

∫
sgn

(
sQs

)
dt (40)

ṡPs = −λP |sPs |0.5 sgn(sPs) − wP

∫
sgn(sPs) dt. (41)

Now, given that sgn(s) = s/ |s|, taking the time derivatives of (40) and (41) leads to:

s̈Qs = −0.5λQ
∣∣sQs

∣∣−0.5 ṡQs − wQ
∣∣sQs

∣∣−1 sQs (42)

s̈Ps = −0.5λP |sPs |−0.5 ṡPs − wP |sPs |−1 sPs . (43)

Let us assume that, thanks to the first addend in the STA, the reaching phase is satisfactorily
completed and the sliding regime is entered. From that moment on,

∣∣sQs,Ps

∣∣ ≤ δQ,P, with δQ,P
close to zero. Considering the most unfavorable case, in which

∣∣sQs,Ps

∣∣ = δQ,P, and using the
definition of sQs,Ps in (8) and (9), the following expressions can respectively be worked out
from (42) and (43):

ëQ +

a2(cQ, λQ)︷ ︸︸ ︷(
0.5δ−0.5Q λQ + cQ

)
ėQ +

a1(cQ, λQ , wQ)︷ ︸︸ ︷(
0.5δ−0.5Q λQcQ + δ−1Q wQ

)
eQ +

a0(cQ, wQ)︷ ︸︸ ︷
δ−1Q wQcQ

∫
eQdt = 0 (44)

ëP +

b2(cP, λP)︷ ︸︸ ︷(
0.5δ−0.5P λP + cP

)
ėP +

b1(cP, λP, wP)︷ ︸︸ ︷(
0.5δ−0.5P λPcP + δ−1P wP

)
eP +

b0(cP, wP)︷ ︸︸ ︷
δ−1P wPcP

∫
ePdt = 0. (45)

Taking the time derivatives of (44) and (45), the following differential equations reflecting the
eQ and eP error dynamics while in sliding regime are obtained:

...
e Q + a2 ëQ + a1 ėQ + a0eQ = 0 (46)
...
e P + b2ëP + b1ėP + b0eP = 0. (47)

Hence, once δQ,P is fixed, adequate selection of cQ,P, λQ,P and wQ,P allows attaining certain
target error dynamics established through the third-order characteristic equation given next:
(
p2 + 2ξωnp + ω2

n

)
(p + αξωn) = p3 + (2+ α) ξωn︸ ︷︷ ︸

d2

p2 +
(
1+ 2αξ2

)
ω2
n︸ ︷︷ ︸

d1

p + αξω3
n︸ ︷︷ ︸

d0

= 0 (48)

which, provided that α is selected high enough —typically α ≥ 10—, gives rise to a pair
of dominant poles with respect to a third one placed at p = −αξωn. As a result, it can
be considered that target error dynamics are entirely defined via ξ damping coefficient
and ωn natural frequency. Those designer-defined error dynamics would theoretically be
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achieved just by tuning cQ,P, λQ,P and wQ,P so that a2 = d2Q(ξQ,ωnQ), a1 = d1Q(ξQ,ωnQ),
a0 = d0Q(ξQ,ωnQ), b2 = d2P(ξP,ωnP), b1 = d1P(ξP,ωnP) and b0 = d0P(ξP,ωnP) are
simultaneously fulfilled. Note that both ξ and ωn could in general take different values if
different dynamic behaviours for reactive and active power errors were required.
Considering the expressions for a2, a1, a0, b2, b1 and b0 provided in (44) and (45), as well
as those for d2, d1 and d0 reflected in (48), the latter conditions lead to the following tuning
equations:

c3Q − d2Qc
2
Q + d1QcQ − d0Q = 0; c3P − d2Pc

2
P + d1PcP − d0P = 0 (49)

λQ = 2
(
d2Q − cQ

)
δ0.5Q ; λP = 2 (d2P − cP) δ0.5P (50)

wQ =
[
d1Q − cQ(d2Q − cQ)

]
δQ; wP = [d1P − cP(d2P − cP)] δP. (51)

It is important to note that the coefficients in (49) coincide with those of target characteristic
equation (48), except for the signs of the squared and independent terms, which are negative.
It therefore turns out that the three possible values for cQ,P are equal to the roots —poles— of
target characteristic equation (48), although their real parts have opposite signs. Since the real
parts of the desired poles must necessarily be negative to ensure stability, the latter implies
that the real parts of the three possible values for cQ,P will always be positive. As a result,
given that expressions in (49) are third-order equations, it is guaranteed that at least one of the
three solutions for cQ,P will be both real and positive, as required.
Specifically, depending on the value chosen for ξQ,P, one of the following three cases arises:

1. If 0 < ξQ,P < 1, only one of the three solutions for cQ,P is both real and positive,
cQ,P = αξQ,PωnQ,P.

2. If ξQ,P = 1, two different acceptable solutions for cQ,P are obtained, c1Q,P = ωnQ,P and
c2Q,P = αωnQ,P.

3. If ξQ,P > 1, the three solutions for cQ,P are real and positive,

c1Q,P = ωnQ,P

(
ξQ,P −

√
ξ2Q,P − 1

)
, c2Q,P = ωnQ,P

(
ξQ,P +

√
ξ2Q,P − 1

)
and

c3Q,P = αξQ,PωnQ,P.

For cases 2 and 3, two or three possible sets of values for cQ,P, λQ,P and wQ,P are respectively
obtained. The set of parameters leading to the best performance may, for example, be
identified through simulation.

3.2.2 DFIG disconnected from the grid —Synchronization stage
The design and tuning process of the current controllers, which synchronizes the voltage
induced at the open stator to that of the grid, is analogous to that presented in the preceding
section 3.2.1. Let the control law with respect to x′-y′ reference frame be

vrx′ = vrx′ST + vrx′eq ; vry′ = vry′ST + vry′eq . (52)

Taking the time derivatives of (10) and (11), the expressions given next arise if (3) and (4) are
considered:

ṡirx′ = i̇rx′ re f + crx′ irx′ re f +
(
Rr

Lr
− crx′

)
irx′ − ωsliry′ − 1

Lr
vrx′ (53)

ṡiry′ = i̇ry′ re f + cry′ iry′ re f +
(
Rr

Lr
− cry′

)
iry′ + ωslirx′ − 1

Lr
vry′ . (54)
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The terms corresponding to the STA may be obtained as

vrx′ST = Lr

[
λx′ |sirx′ |0.5sgn(sirx′ ) + wx′

∫
sgn(sirx′ )dt

]
(55)

vry′ST = Lr

[
λy′ |siry′ |0.5sgn(siry′ ) +wy′

∫
sgn(siry′ )dt

]
, (56)

where λx′ , wx′ , λy′ and wy′ are positive parameters to be tuned. As far as equivalent control
terms are concerned, they are derived by zeroing (53) and (54), thus yielding

vrx′eq = Lr

[
i̇rx′ re f +

Rr

Lr
irx′ − ωsliry′ + crx′(irx′ re f − irx′)

]
(57)

vry′eq = Lr

[
i̇ry′ re f +

Rr

Lr
iry′ + ωslirx′ + cry′(iry′ re f − iry′)

]
. (58)

Again, note that all the control terms are premultiplied by a −Lr gain in this case, which is the
inverse of that affecting control signals in (53) and (54). As mentioned before, its only purpose
is to facilitate the tuning of the parameters involved in the commanding algorithm.
Substitution of control law (52) into (53) and (54) leads to

ṡirx′ = −λx′ |sirx′ |0.5sgn(sirx′ ) − wx′
∫
sgn(sirx′ )dt (59)

ṡiry′ = −λy′ |siry′ |0.5sgn(siry′ )− wy′
∫
sgn(siry′ )dt, (60)

expressions which turn out to be identical to those presented in (40) and (41) provided that
’irx′ ’ and ’x′’ subscripts are respectively replaced by ’Qs’ and ’Q’, and, likewise, ’iry′ ’ and ’y′’
subscripts are interchangedwith ’Ps’ and ’P’. Therefore, the same reasoning detailed in section
3.2.1 can be followed in order to achieve the tuning equations of λx′ , wx′ , cx′ , λy′ , wy′ and cy′
parameters. As a result,

c3x′ − d2x′c
2
x′ + d1x′cx′ − d0x′ = 0; c3y′ − d2y′c

2
y′ + d1y′cy′ − d0y′ = 0 (61)

λx′ = 2 (d2x′ − cx′ ) δ0.5x′ ; λy′ = 2
(
d2y′ − cy′

)
δ0.5y′ (62)

wx′ = [d1x′ − cx′ (d2x′ − cx′ )] δx′ ; wy′ =
[
d1y′ − cy′ (d2y′ − cy′ )

]
δy′ (63)

3.2.3 Bumpless connection
Considering that the DFIG presents different dynamicswhen disconnected or connected to the
grid, two STA-based controllers have been designed for generating a continuous command
signal. So far, the performance for each state has only been considered, but undesirable
phenomena may appear if the switch between the two controllers is not properly carried out.
If a direct transition is accomplished, a discontinuity arises in the command signal at the
instant of connection, due to the magnitude mismatch between the rotor voltages generated
by the two controllers. This effect produces high stator current values, leading the machine
to an excessive power exchange with the grid. Aiming to avoid this "bump", it is possible to
apply the same value of the control signal previous to and just after the transition —k− 1 and
k instants respectively—; i.e.,

vrx = vrx′ (64)

vry = vry′ . (65)
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However, this way the "bump" is only delayed one sample time and it actually takes effect in
the next sampling instant —k + 1.
A bumpless transition may take place if the above proposed solution is slightly modified
(Åström & Hägglund, 1995). Setting the focus on the rotor voltage components when the
DFIG is connected to the grid, appropriate combination of (36), (38) and (37), (39) produces

vrx = − 2
3

LsL′r
|�vs|Lm

[
λQ|sQs |0.5sgn(sQs) + wQ

∫
sgn(sQs)dt + Q̇s re f + cQ(Qs re f −Qs)

]
+

+ Rrirx − L′rωsliry (66)

vry = − 2
3

LsL′r
|�vs|Lm

[
λP|sPs |0.5sgn(sPs) + wP

∫
sgn(sPs)dt + Ṗs re f + cP(Ps re f − Ps)

]
+

+ Rriry +
Lm
Ls

ωsl|�ψs| + L′rωslirx. (67)

Two integral terms, Isgn(sQs) =
∫
sgn(sQs)dt and Isgn(sPs) =

∫
sgn(sPs)dt, can be observed.

Their initial values, which are set to zero when connection occurs, are the source of the
mentioned "bump". Aiming at lessening or even eliminating this effect, it can be taken
advantage of (64) and (65) to calculate those initial values at connection time. Substituting
(66) and (67) into (64) and (65), respectively, leads to

Isgn(sQs)0
= − 3

2
|�vs|Lm
LsL′rwQ

(
vrx′ − Rrirx + L′rωsliry

)−

− λQ|sQs
|0.5sgn(sQs

) + Q̇s re f + cQ(Qs re f −Qs)
wQ

(68)

Isgn(sPs)0
= − 3

2
|�vs|Lm
LsL′rwP

(
vry′ − Rriry − Lm

Ls
ωsl|�ψs| − L′rωslirx

)
−

− λP|sPs |0.5sgn(sPs) + Ṗs re f + cP(Ps re f − Ps)
wP

. (69)

3.3 Sensorless scheme —Adaptation for synchronization
Both the 1-SMC and 2-SMC designs are combinedwith the MRAS observer proposed by (Peña
et al., 2008) in order to build two alternative sensorless control schemes. As a result, the
controller is provided with the estimated rotor electrical speed and position, thus avoiding
both the use ofmechanical components—encoders—and the initial rotor positioning required
for the synchronization of the stator and grid voltages (Tapia et al., 2009). Morover, observers
may be used for “chattering” phenomenon alleviation (Utkin et al., 1999; Utkin, 1993).
It is worth pointing out that the MRAS observer must be adapted for the case of being
disconnected from the grid. On the one hand, since stator currents are null in this state,
calculation of stator flux in the stationary sD-sQ frame must be slightly modified

ψsQ =
∫

(vsQ − RsisQ)dt → ψsQ =
∫

vsQdt (70)

ψsD =
∫

(vsD − RsisD)dt → ψsD =
∫

vsDdt. (71)

On the other hand, the stator voltages are those induced by the rotor currents for
synchronization, and present a considerable noise. For a proper control, the affected signals
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are filtered out by means of a 500-Hz bandwidth second-order Butterworth filter, which in
turn produces a phase lag of γ = 8.1297◦ at 50Hz. This lag must be compensated in order
to estimate the components of the actual stator voltage phasor. Considering Fig. 5, it can be
stated that

|�vs| = |�vs f iltered| =
√

v2sD f iltered + v2sQ f iltered (72)

β = arctan
vsQ f iltered

vsD f iltered
. (73)

Furthermore, given that the γ phase lag is known deriving the argument of �vs from Fig. 5 as
arg(�vs) = β + γ, the components of the actual stator voltage space-phasor given next arise:

vsD = |�vs| cos(β + γ) (74)

vsQ = |�vs| sin(β + γ). (75)
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Fig. 5. Actual and filtered stator voltage space-phasors

4. Hardware-in-the-loop results

The presented sensorless 1-SMC and 2-SMC algorithms are evaluated, through real-time HIL
emulation, over a full-detail virtual DFIG prototype running on eMEGAsim OP4500 F11-13
simulator by OPAL-RT. The electric parameters of the 660-kW DFIG under consideration are
collected in Table 1.
Aiming at showing some of the most illustrative results of the two alternative control
algorithms put forward, the test whose main events are reflected in Table 2 is conducted.
It should be pointed out that what causes the DFIG control system to generate the order of
connection to the grid, taking place at second 0.474, is the DFIG rotational speed exceeding
the already mentioned threshold of 1270 rpm.
The 1-SMC algorithm itself is implemented on a Virtex-II Pro series FPGA by Xilinx, which
allows reaching the 40-kHz sampling rate required to avoid causing excessive chatter. Direct
measurement of the grid voltage allows accurately computing angle ρ′s, and, as a result,
identifying the exact position of the x′-y′ reference frame. On the other hand, the ρs angle,
which provides the location of the stator-flux-oriented x-y reference frame, is derived from
the direct (ψsD) and quadrature (ψsQ) stationary-frame components of the stator flux. These
are in turn estimated by integration of the stator voltage minus the resistive drop. A digital
bandpass filter is used as a modified integrator to avoid drift (Peña et al., 2008). Regarding

123
Sensorless First- and Second-Order Sliding-Mode
Control of a Wind Turbine-Driven Doubly-Fed Induction Generator



PARAMETER VALUE

Rated r.m.s. stator voltage 398/690 V
Rated peak rotor voltage 380 V
Rated peak rotor current 400 A
Stator resistance per phase, Rs 6.7 mΩ
Stator inductance per phase, Ls 7.5 mH
Magnetizing inductance, Lm 19.4 mH
Rotor resistance per phase, Rr 39.9 mΩ
Rotor inductance per phase, Lr 52 mH
General turns ratio, n 0.3806
Number of pole pairs, P 2

Table 1. DFIG electric parameters

EVENT TIME INSTANT (S)

Order of connection to the grid;
start of synchronization process; 0.474
initial convergence of the observer
End of synchronization process; 1.474
connection to the grid at zero power
Start of power generation 1.974
Sudden increase of wind speed 7
Sudden decrease of wind speed 12

Table 2. Main events of the designed test

switching variables, in this particular case, cQ and cP are set to 10, while cx′ and cy′ are made
equal to 0. In addition, the integral terms in sPs and sQs are discretized by applying Tustin’s
trapezoidal method (Kuo, 1992).
Fig. 6(a) displays a general portrait of the synchronization stage. In addition, details at both
its beginning and its end are reflected in Figs. 6(b) and 6(c), respectively. The former evidences
the rapid dynamic response of vsA, vsB and vsC voltages, induced at the terminals of the DFIG
open stator, when synchronizing with vgrid A, vgrid B and vgrid C grid voltages. As expected,
no active and reactive powers are exchanged between the DFIG stator and the grid during
synchronization, as corroborated by Figs. 7(a) and 7(b).
The DFIG is then connected to the grid at zero power, until power generation according to
the optimum power curve is launched 0.5 s later. Fig. 7(a) shows the excellent performance
of the stator-side active power, Ps, when, as a result of the two sudden wind speed changes
occurring at seconds 7 and 12, a great part of the optimum power curve is tracked both up
and downwards. The also superior tracking of the target stator-side reactive power, Qsre f ,
is evidenced in Fig. 7(b). The instantaneous reference value for Qs is fixed so that the DFIG
operates with a 0.95 leading —capacitive— power factor all through the test. Chatter in Ps
and Qs represents only ±3% of the rated power.
Given that, as indicated above, control signals are updated at a 40-kHz sample rate, gating
signals swk; k = 1, 2 . . . 6, are able to toggle every 25 μs, if required. This results in a maximum
switching frequency of 20 kHzwith 50% duty cycle. However, switching frequency of the RSC
insulated gate bipolar transistors (IGBTs) is variable, as dictated by switching functions s1, s2
and s3. This is clearly observable in Fig. 8(a), where the frequency spectrum corresponding to
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Fig. 6. Stator and grid voltages of the 1-SMC controller-driven DFIG at the synchronization
stage

gating signal sw1 is displayed. The three-phase rotor current resulting from the gating signals
applied to the RSC IGBTs is that displayed in Fig. 8(b). As expected, it turns out to be variable
in magnitude, frequency and phase.
Fig. 9 reflects the performance of the digitalMRAS observer, which operates at a 1-kHz sample
rate. In this particular case, it is incorporated not only for sensorless control, but also as
a supporting tool for chatter attenuation (Utkin et al., 1999; Utkin, 1993). The observer is
launched once the order of connection to the grid is automatically generated. As evidenced
in Fig. 9(a), the estimated rotor mechanical speed converges rapidly to its actual value at
the earlier part of the synchronization stage, and, from that point onwards, keeps track of it
satisfactorily in spite of the transition from the disconnected state to the connected one taking
place at second 1.474. Moreover, a detail illustrating the fast convergence of the estimated
rotor electrical position to its actual value is displayed in Fig. 9(b).
As far as the sensorless 2-SMC algorithm is concerned, it is programmed in C language on
a DSP-based board. Control signals vrx and vry are demodulated to derive the vrα and vrβ

voltage components, expressed in the rotor natural reference frame, which are then supplied
as inputs to the SVM algorithm generating the gating signals of RSC IGBTs. Angles ρs and
ρ′s, required both to estimate equivalent control terms and to demodulate vrx and vry control
signals, are derived in the same manner as for the 1-SMC algorithm. Both the 2-SMC and
SVM algorithms operate at a 5-kHz sample rate, while the MRAS observer runs, as in the
preceding case, at 1 kHz. The integral terms included in both the switching functions and
the STA algorithm itself are digitally implemented based on Tustin’s trapezoidal method. Yet,
aiming to elude the risk of causing derivative “ringing” (Åström & Hägglund, 1995), Euler’s
rectangular method is applied to discretize the time derivatives of Ps re f and Qsre f appearing
in equivalent control terms.
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Fig. 7. Active and reactive powers of the DFIG commanded by the 1-SMC controller
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Fig. 8. Frequency spectrum of sw1 gating signal, and resulting three-phase rotor current

Selecting a δx′,y′ = 0.01 A, control parameters for synchronization are adjusted seeking to
reach closed-loop rotor current error dynamics exhibiting a unit damping coefficient and a
ωnx′,y′ = 55.2381 rad/s natural frequency while in sliding regime. As a result, if different
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Fig. 9. Actual and estimated mechanical speed and electrical position of the DFIG rotor

from zero, errors in rotor current irx′ and iry′ components would vanish, according to the
2% criterion (Ogata, 2001), in 105 ms, showing no overshoots. Similarly, forcing δP,Q to be
equal to 0.1 kW, and specifying ξP,Q = 1 and ωnP,Q = 82.8571 rad/s, respectively, as target
damping coefficient and natural frequency for closed-loop power error dynamics, possible
errors arising in active and reactive powerswould theoretically decay to zero in 70ms, with no
overshoots. If α is made equal to 10, the values resulting for the 2-SMC algorithm parameters
are those collected in Table 3.

PARAMETER VALUE

cx′ , cy′ 55.2381
λx′ , λy′ 121.5238
wx′ , wy′ 305.1247
cP, cQ 82.8571
λP, λQ 1.8229 · 104
wP, wQ 6.8653 · 106

Table 3. Values for the parameters belonging to the 2-SMC algorithm

The most significant results corresponding to the applied sensorless SVM-based 2-SMC
are illustrated by Figs. 10, 11 and 12. Given that those figures are very similar to
their corresponding 1-SMC counterparts —Figs. 6, 7 and 8, respectively—, only the main
differences between them will accordingly be commented on.
Comparison of Figs. 6 and 7with Figs. 10 and 11, respectively, reveals that the resulting chatter
is somewhat lower for the 2-SMC case. In addition, synchronization of the voltage induced in
the DFIG open stator to that of the grid is achieved faster when applying the 1-SMC algorithm,
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Fig. 10. Stator and grid voltages of the 2-SMC controller-driven DFIG at the synchronization
stage

as evidenced by Figs. 6 and 10. Furthermore, even though the 2-SMC algorithm is provided
with bumpless transfer from the disconnected state to the connected one, Figs. 7 and 11 prove
that power exchange with the grid at the instant of connection is considerably lower for the
case of the 1-SMC.
On the other hand, since the SVM-based 2-SMC leads to a 5-kHz constant switching frequency
of the RSC IGBTs, in Fig. 12(a) the frequency spectrum of Fig. 8(a) has been replaced with the
vrα and vrβ voltage components supplied as inputs to the SVM algorithm. The smoothness
of vrα and vrβ in Fig. 12(a) indicates that, like in classical PI controller-based FOC schemes,
chatter in Ps and Qs observable in Fig. 11 is just attributable to SVM, not to the 2-SMC
algorithm itself.
To conclude, as it turns out that the MRAS observer performance is extremely similar to that
resulting in the case of the sensorless 1-SMC, it is not included here to avoid reiteration.

5. Conclusion

Real-time HIL emulation results obtained by running sensorless versions of the 1-SMC and
2-SMC arrangements presented in this chapter reveal that excellent tracking of a predefined
rotor speed-dependent optimum power curve is reached in both cases. In addition, prior
to connecting the DFIG stator to the grid, they are also capable of achieving satisfactory
synchronization of the voltage induced at the open stator terminals to that of the grid.
In any case, it may be of interest to contrast both SMC algorithms, so as to identify the
strengths and weaknesses associated to each of them. This section will hence focus on that
comparison.
As far as the complexity of the algorithm itself is concerned, the 1-SMC version turns out
to be considerably simpler than the 2-SMC one. Given that the control signals generated
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Fig. 11. Active and reactive powers of the DFIG commanded by the 2-SMC controller
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Fig. 12. Rotor voltage components fed into the SVM algorithm, and resulting three-phase
rotor current

by the 1-SMC correspond to the gating signals of the RSC IGBTs, no additional modulation
techniques —such as pulse-width modulation (PWM) or SVM— are required. In contrast, the
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control signals produced by the proposed 2-SMC correspond to continuous voltage direct and
quadrature components to be applied to the rotor by means of the RSC, which implies the
use of intermediate SVM modulation. Furthermore, providing an additional procedure for
bumpless transition between the algorithms devoted to synchronization and power control is
indispensable for the case of the 2-SMC, but it is not required for the 1-SMC scheme.
Regarding parameter tuning, only the c constants included in the four switching functions
considered need to be tuned for the case of the 1-SMC. It therefore turns out that satisfactory
parameter adjustment is easily achieved by mere trial and error. However, in addition to those
c constants, the λ and w gains present in the STAs must also be tuned for the 2-SMC variant.
Even though, as stated in (Bartolini et al., 1999), it is actually the most common practice,
trial and error tuning is not particularly effective in this latter case, as it may become highly
time-consuming. Therefore, it is believed that there exists a strong need for development of
alternative methods for STA-based 2-SMC tuning.
Concerning the switching frequency of the RSC IGBTs, it is fixed at 5 kHz in the case of the
2-SMC. On the contrary, it turns out to be variable, within the range from 0 to 20 kHz, for
the 1-SMC algorithm. This feature complicates the design of both the back-to-back converter
feeding the DFIG rotor and the grid-sideAC filter, since broadband harmonics may be injected
into the grid. As a result of the 25-μs sample time selected for the 1-SMC scheme, which
leads to the aforementioned maximum switching frequency of 20 kHz, chatter observable
in stator-side active and reactive powers is somewhat lower than ±3% of the DFIG 660-kW
rated power. Even a lower level of chatter arises from application of the SVM-based 2-SMC
algorithm put forward. Furthermore, that chatter, or at least great part of it, is caused by the
SVM, not by the 2-SMC algorithm itself.
Apart from the superior optimum power curve tracking achieved with both alternative SMC
designs, the dynamic performance resulting from realization of the proposed 1-SMC scheme
is noticeably better than that to which application of its 2-SMC counterpart leads. In effect,
focusing on the state in which the DFIG stator is disconnected from the grid, HIL emulation
results demonstrate that synchronization is reached faster by employing the 1-SMC algorithm.
On the other hand, the power exchange between the DFIG and the grid taking place at the
initial instants after connection is significantly lower when adopting the 1-SMC algorithm put
forward, hence evidencing that its dynamic performance is also better for the stage during
which power control is dealt with. The excellent dynamic performance reachable by means of
its application supports the 1-SMC approach as a potential candidate for DFIG control under
grid faults, where rapidity of response becomes crucial.
The main conclusions drawn from the comparison conducted in this section are summarized
in Table 4.

1-SMC ALGORITHM 2-SMC ALGORITHM

ALGORITHM COMPLEXITY Relatively simple More complex
PWM/SVM Not required Required
BUMPLESS PROCEDURE Not required Required
PARAMETER TUNING Straightforward Complex
SWITCHING FREQUENCY Variable from 0 to 20 kHz Fixed at 5 kHz
CHATTER LEVEL ±3% of the rated power Lower
DYNAMIC PERFORMANCE Excellent Very good

Table 4. Comparison between the two SMC algorithms put forward
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1. Introduction

Three-phase induction motors have been widely used in a variety of industrial applications.
Induction motors have been able to incrementally improve energy efficiency to satisfy the
requirements of reliability and efficiency, Melfi et al. (2009). There are well known advantages
of using induction motors over permanent magnet DCmotors for position control tasks; thus,
efforts aimed at improving or simplifying feedback controller design are well justified.
There exists a variety of control strategies that depend on difficult to measuremotor parameters
while their closed loop behavior is found to be sensitive to their variations. Even adaptive
schemes tend to be sensitive to speed-estimation errors, yielding to a poor performance in the
flux and torque estimation, especially during low-speed operation, Harnefors & Hinkkanen
(2008).
Generally speaking, the designed feedback control strategies have to exhibit a certain
robustness level in order to guarantee an acceptable performance. It is possible to (on-line or
off-line) obtain estimates of the motor parameters, Hasan &Husain (2009); Toliyat et al. (2003),
but some of them can be subject to variation when the system is undergoing actual operation.
Frequent misbehavior is due to external and internal disturbances, such as generated heat,
that significantly affect some of the system parameter values. An alternative to overcome
this situation is to use robust feedback control techniques which take into account these
variations as unknown disturbance inputs that need to be rejected. In this context, sliding
mode techniques are a good alternative due to their disturbance rejection capability (see for
instance, Utkin et al. (1999)).
In this chapter, we consider a two stage control scheme, the first one is devoted to the control of
the rotor shaft position. This analog control is performed bymeans of the stator current inputs,
in a configuration of an observer based control. Themathematical model of the rotor dynamics
is a simplified model including additive, completely unknown, lumping nonlinearities and
external disturbances whose effect is to be determined in an on-line fashion by means of linear
observers. The gathered knowledge will be used in the appropriate canceling of the assumed
perturbations themselves while reducing the underlying control problem to a simple linear
feedback control task. The control scheme thus requires a rather reduced set of parameters to
be implemented.
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The observation scheme for the modeled perturbation is based on an extension of the
Generalized Proportional Integral (GPI) controller, Fliess, Marquez, Delaleau & Sira-Ramírez
(2002) to their dual counterpart: the GPI observer which corresponds to a class of extended
Luenberger-like observers, Luviano-Juárez et al. (2010). Such observers were introduced
in, Sira-Ramirez, Feliu-Batlle, Beltran-Carbajal & Blanco-Ortega (2008) in the context of
Sigma-Delta modulation observer tasks for the detection of obstacles in flexible robotics.
Under reasonable assumptions, the observation technique consists in viewing the measured
output of the plant as generated by an equivalent perturbed pure integration dynamics with
an additive perturbation input lumping, in a single function, all the nonlinearities of the
output dynamics. The linear GPI observer, is set to approximately estimate the states of the
pure integration system as well as the evolution of the, state dependent, perturbation input.
This observer allows one to approximately estimate, on the basis of the measured output, the
states of the nonlinear system, as well as to closely estimate the unknown perturbation input.
The proposed observation scheme allows one to solve, rather accurately, the disturbance
estimation problem.
Here, these observers are used in connection with a robust controller design applicationwithin
the context of high gain observation. This approach is prone to overshot effects and may be
deemed sensitive to saturation input constraints, specially when used in a high gain oriented
design scheme via the choice of large eigenvalues. Such a limitation is, in general, an important
weakness in many practical situations. However, since our control scheme is based on a linear
observer design that can undergo temporary saturations and smooth “clutchings" into the
feedback loop, its effectiveness can be enhanced without affecting the controller structure and
the overall performance. We show that the observer-based control, overcomes these adverse
situations while enhancing the performance of the classical GPI based control scheme.
The linear part of the controller design is based on the Generalized Proportional Integral
output feedback controller scheme established in terms of Module Theory.
In the second design stage, the designed current signals of the first stage are deemed as
reference trajectories, and a discontinuous feedback control law for the input voltages is
sought which tracks the reference trajectories. Since the electrical subsystem is faster than the
mechanical, we propose a sliding mode control approach based on a class of filtered sliding
surfaces which consist in regarding the traditional surface with the addition of a low pass
filter, without affecting the relative degree condition of the sliding surface. The “chattering
effect" related to the sliding mode application is eased by means of a first order low-pass filter
as proposed in, Utkin et al. (1999).
GPI control has been established as an efficient linear control technique (See Fliess et al.,
Fliess, Marquez, Delaleau & Sira-Ramírez (2002)); it has been shown, in, Sira-Ramírez &
Silva-Ortigoza (2006), to be intimately related to classical compensator networks design.
The main limitation of this approach lies in the assumption that the available output signal
coincideswith the system’s flat output (See Fliess et al.Fliess et al. (1995), and also Sira-Ramírez
and Agrawal, Sira-Ramírez & Agrawal (2004)) and, hence, the underlying system is, both,
controllable and, also, observable from this special output. Nevertheless, this limitation is
lifted for the case of the induction motor system.
The controller design is carried out with the philosophy of the classical field oriented
controller scheme and implemented through a flux simulator, or reconstructor (see Chiasson,
Chiasson (2005)). The methodology is tested and illustrated in an actual laboratory
implementation of the induction motor plant in a position trajectory tracking task.
The rest of the chapter is presented as follows: Section 2 describes each of the methodologies to
use along the chapter such as the sliding mode control method, the Generalized Proportional
Integral control and the disturbance observer. The modeling of the motor and the problem
formulation are given in Section 3, and the proposed methodologies are joined to solve the
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problem in Section 4. The results of the approach are obtained in an experimental framework,
as depicted in Section 5. Finally some concluding remarks are given.

2. Some preliminary aspects

2.1 Sliding mode control using a proportional integral surface: Introductory example
Consider the following first order system:

ẏ = u+ ξ(t) (1)

where y is the output of the system, ξ(t) can be interpreted as a disturbance input (which may
be state dependent) and u ∈ {−W,W} is a switched class input. We propose here to take as a
sliding surface coordinate function the following expression in Laplace domain s:

σ = − s+ z
s

e (2)

e = y− y∗

with z > 0.
The switched control is defined as

u = Wsign(σ), (3)
W > 0

We propose the following Lyapunov candidate function:

V =
1
2

σ2 (4)

whose time derivative is V̇ = σσ̇. From (2)

σ̇ = −ė− ze (5)

We have

σσ̇ = −σė− zeσ
= −σẏ+ σẏ∗ − zeσ
= −W|σ| − σξ(t) + σẏ∗ − zeσ

since the term −σξ(t) + σẏ∗ − zeσ does not depend on the input, by settingW in such a way
that we can ensure that V̇ < 0, the sliding condition for σ is achieved.
The classical interpretation of the output feedback controller suggests, immediately, the
following discontinuous feedback control scheme:

σ

+

−e n(s)
d(s) Wsign(σ)

ξ(t)

Plant

y∗(t)

y(t)

u

Fig. 1. GPI control scheme.
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where n(s) = s+ z regulates the dynamic behavior of the tracking error and d(s) = s acts as
a “filter" of the sliding surface.
The equivalent control is obtained from the invariance conditions:

σ = σ̇ = 0

i.e,

ueq = ẏ∗ − ze (6)

in other words, the proposed sliding surface has, in the equivalent control sense, the same
behavior of the traditional proportional sliding surface of the form σ1 = ze. However, the
closed loop behavior of the systemwith the smooth sliding surface, presents some advantages
as shown in, Slotine & Li (1991). Since this class of controls induce a “chattering effect", to
reduce this phenomenon, we insert in the control law output a first order low-pass filter,
which, in some cases, needs and auxiliary control loop (as shown in the integral sliding mode
control design, Utkin et al. (1999)). In our case, the architecture of the control system based on
two control loops and disturbance observers will act as the auxiliary control input.

2.2 Generalized Proportional Integral Control
GPI control, or Control based on Integral Reconstructors, Fliess & Sira-Ramírez (2004), is a
recent development in the literature on automatic control. Its main line of development rests
within the finite dimensional linear systems case, with some extensions to linear delayed
differential systems and to nonlinear systems (see Fliess et al., Fliess, Marquez, Delaleau
& Sira-Ramírez (2002), Fliess et al., Fliess, Marquez & Mounier (2002) and Hernández and
Sira-Ramírez, Hernández & Sira-Ramírez (2003)).
The main idea of this control approach is the use of structural reconstruction of the state
vector. This means that states of the system are obtained modulo the effect of unknown initial
conditions as well as constant, ramp, parabolic, or, in general, polynomial, additive external
perturbation inputs. The reconstructed states are computed solely on the basis of inputs and
outputs. These state reconstructions may be used in a linear state feedback controller design,
provided the feedback controller is complementedwith a sufficient number of iterated output,
or input, integral error compensation which structurally match the effects of the neglected
perturbation inputs and initial states.
To clarify the idea behind GPI control, consider the following elementary example,

ÿ = u+ ξ (7)
y(0) = y0
ẏ(0) = ẏ0

with ξ being an unknown constant disturbance input. The control problem consists in
obtaining an output feedback control law, u, that forces y to track a desired reference trajectory,
given by y∗(t), in spite of the presence of the unknown disturbance signal and the unknown
value of ẏ(0).
Let ey � y− y∗(t) be the reference trajectory tracking error and let u∗ be a feed-forward input
nominally given by ÿ∗(t) = u∗(t). The input error is defined as eu � u− u∗(t) = u− ÿ∗(t).
Integrating equation (7) we have,
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ẏ =
∫ t

0
u(τ)dτ + ẏ(0) + ξt (8)

The integral reconstructor of ẏ is defined to be:

ˆ̇y =
∫ t

0
u(τ)dτ (9)

The relation between the structural estimate of ẏ of the velocity and the actual value of the
velocity state is given by,

ˆ̇y = ẏ− ẏ(0)− ξt (10)

The presence of an unstable ramp error between the integral reconstructor of the velocity and
the actual velocity value, prompts us to use a complementary double integral compensating
control action on the basis of the position tracking error. We have the following result:

Proposition 1. Given the perturbed dynamical system, described in (7), the following dynamical
feedback control law

u = ÿ∗ − k3( ˆ̇y− ẏ∗)− k2ey(t)− k1
∫ t

0
ey(τ)dτ

−k0
∫ t

0

∫ τ

0
ey(σ)dσdτ (11)

with ˆ̇y defined by (9), forces the output y to asymptotically exponentially track the desired reference
trajectory, y∗(t).

Proof. Substituting equation (11) into equation (7), yields the following closed loop tracking
error dynamics:

ëy + k3( ˆ̇y− ẏ∗) + k2ey + k1
∫ t

0
ey(τ)dτ

+ k0
∫ t

0

∫ τ

0
ey(σ)dσdτ = 0 (12)

Using (10) one obtains,

ëy + k3 ėy + k2ey + k1
∫ t

0
ey(τ)dτ

+ k0
∫ t

0

∫ τ

0
ey(σ)dσdτ = k3(ẏ(0) + ξt) (13)

Taking two time derivatives in (13) the introduced disturbance due to the integral
reconstructor is annihilated as follows:

e(4)y + k3e
(3)
y + k2 ëy + k1 ėy + k0ey = 0 (14)
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The justification of this last step is readily obtained by defining the following state variables
along with their initial conditions,

ρ1 =
∫ t

0
ey(τ)dτ− (k3/k1)y(0),

ρ1(0) = −(k3/k1)y(0)
ρ2 =

∫ t

0

∫ τ

0
ey(λ)dλdτ − (k3/k0)ξt,

ρ2(0) = 0

ρ3 = ρ̇2 =
∫ t

0
ey(τ)dτ − (k3/k0)ξ,

ρ3(0) = −(k3/k0)ξ
The closed loop system reads then as follows,

d
dt

χ = Aχ

with χ = (ey, ėy, ρ1, ρ2, ρ3)T and

A =

⎡⎢⎢⎢⎣
0 1 0 0
−k2 −k3 −k1 −k0
1 0 0 0
0 0 0 1
1 0 0 0

⎤⎥⎥⎥⎦
The characteristic polynomial associated with the matrix A is readily found to be given by

PA(s) = s4 + k3s
3 + k2s

2 + k1s+ k0 (15)

Finally, by choosing k3, k2, k1, k0 such that the polynomial (15) has all its roots located on the
left half of the complex plane, C, the tracking error, ey, decreases exponentially asymptotically
to zero as a function of time.

Remark 2. Notice that the GPI controller (11) can also be written as a classic compensation network
(expressed in the frequency domain). From (11) and (9),

u(t) = u∗(t)− k3
∫ t

0
eu(τ)dτ − k2ey(t)− k1

∫ t

0
ey(τ)dτ

− k0
∫ t

0

∫ τ

0
ey(σ)dσdτ (16)

Using the fact that, eu = u − u∗(t), and applying the Laplace transform to the last expression, we
have,

eu(s) = −k3
eu(s)
s

− k2ey(s)− k1
ey(s)
s
− k0

ey(s)
s2

(17)

Re-ordering the last equation we have:

eu(s) = −
[
k2s2 + k1s+ k0

s(s+ k3)

]
ey(s) (18)
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In other words

u(s) = s2y∗(s)−
[
k2s2 + k1s+ k0

s(s+ k3)

]
ey(s) (19)

2.3 Generalized proportional integral observers
Consider the following n-th order scalar nonlinear differential equation,

y(n) = φ(t, y, ẏ, ÿ, · · · , y(n−1)) + ku (20)

where φ is a smooth nonlinear scalar function, k ∈ R and u is a control input. We state the
following definitions and assumptions:

Definition 3. Define the following time function:

ϕ : t �→ φ(t, y(t), ẏ(t), ÿ(t), · · · , y(n−1)(t)) (21)

i.e., denote by ϕ(t), the value of φ for a certain solution y(t) of (20) for a fixed set of �nite initial
conditions. In other words; ϕ(t) = φ(t, y(t), ẏ(t), ÿ(t), · · · , y(n−1)(t)), where y(t) is a smooth
bounded solution of Eq. (20) from a certain set of �nite initial conditions.

Assumptions 4.

• We assume that a unique, smooth, bounded solution, y(t), exists for the nonlinear differential
equation, (20), for every given set of �nite initial conditions.

• The values of the function, ϕ(t), are unknown, except for the fact that they are known to be
uniformly, absolutely, bounded for every smooth bounded function, y(t), which is a solution of
Eq. (20).

• For any positive integer p, we can find a small positive, real number, δp, such that ϕ(p)(t) is
uniformly absolutely bounded, i.e.,

sup
t≥0

|ϕ(p)(t)| < δp , ∀p ∈ Z+ < ∞ (22)

• The following system
y(n) = ϕ(t) + ku (23)

with u as a known system input, and ϕ(t) unknown but bounded with negligible high order
derivatives after some integer order p is assumed to capture, from a signal processing viewpoint, all
the essential features of the nonlinear system (20).

2.3.1 A GPI observer approach to state estimation of unknown dynamics
We formulate the state estimation problem for the system (20) via GPI observers as follows:
Under the above assumptions, given the noise-free measurement of y(t), u(t), it is desired to
estimate the natural state variables (or: phase variables) of the system (20), given by y(t), ẏ(t),
ÿ(t), ..., y(n−1)(t), via the use of the natural equivalence of system (20) with the simpli�ed uncertain
system given by (23).
The solution to the simultaneous state and perturbation estimation problem can be achieved
via the use of an extended version of the traditional linear Luenberger observer, that we
address here as GPI observer, as follows.
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Proposition 5. Luviano-Juárez et al. (2010) Under the assumptions given above. For a system of the
form (23), the following observer

˙̂y1 = λp+n−1(y− ŷ1) + ŷ2
˙̂y2 = λp+n−2(y− ŷ1) + ŷ3
...

˙̂yn = λp (y− ŷ1) + ku+ ρ1

ρ̇1 = λp−1 (y− ŷ1) + ρ2

ρ̇2 = λp−2 (y− ŷ1) + ρ3

... (24)
ρ̇p−2 = λ2 (y− ŷ1) + ρp−1
ρ̇p−1 = λ1 (y− ŷ1) + ρp

ρ̇p = λ0 (y− ŷ1)

ŷi = ŷ(i−1)

asymptotically exponentially reconstructs, via the observer variables: ŷ1, ŷ2, · · · , ŷn, the phase
variables y, ẏ, · · · , y(n−1), y(n), while the observer variables ρ1, ρ2,..., respectively, reconstruct in
an asymptotically exponentially fashion, the perturbation input ϕ(t) and its time derivatives ϕ̇(t),...
modulo a small error, uniformly bounding the reconstruction error ε = y− ŷ(t) = y− ŷ1, and its first
n − 1 - th order time derivatives provided the design parameters, λ0, · · · ,λp+n−1 are chosen so that
the roots of the associated polynomial in the complex variable s:

P(s) = sp+n + λp+n−1sp+n−1+ λp+n−2sp+n−2 + . . .+ λ1s+ λ0 (25)

are all located deep in the left half of the complex plane.

Proof. Define, as suggested in the Proposition, the estimation error as follows:

ε(t) � y(t)− ŷ1(t) (26)

taking p + n time derivatives in last equation, and using the reconstruction error dynamics
for ε, derivable from the observer equations, leads to the following perturbed reconstruction
error dynamics:

ε(p+n) + λp+n−1ε(p+n−1) + λp+n−2ε(p+n−2) + · · ·+ λ1 ε̇ + λ0ε = ϕ(p)(t) (27)

which is a perturbed n + p - th order linear time invariant system, whose perturbation
input is given by ϕ(p)(t). Given that the characteristic polynomial P(s), corresponding to the
unperturbed output reconstruction error system, has its roots in the left half of the complex
plane, then the Bounded Input Bounded Output (BIBO) stability condition is assured, Kailath

(1979) since, uniformly in t,
∣∣∣ϕ(p)(t)

∣∣∣ < γp. Thus, the output reconstruction error, ε, and
its first n + p − 1 time derivatives are ultimately constrained to a disk in the reconstruction
error phase space of arbitrary small radius which is further decreased as the roots of the
dominating characteristic polynomial are chosen farther and farther into the left half of the
complex plane.
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3. Problem formulation

Consider the following dynamic model describing the two-phase equivalent model of a
three-phase motor controlled by the phase voltages uSa and uSb with state variables given
by: θ, describing the rotor angular position, ω being the rotor angular velocity, ψRa and ψRb,
representing the unmeasured rotor fluxes, while iSa and iSb are taken to be the stator currents.

dθ

dt
= ω

dω

dt
= μ(iSbψRa − iSaψRb)− τL

J
dψRa

dt
= −ηψRa − npωψRb + ηMiSa

dψRb
dt

= −ηψRb + npωψRa + ηMiSb (28)

diSa
dt

= ηβψRa + βnpωψRb− γiSa +
uSa
σLS

diSb
dt

= ηβψRb − βnpωψRa − γiSb +
uSb
σLS

with

η :=
RR

LR
, β :=

M
σLRLS

, μ :=
npM
JLR

,

γ :=
M2RR

σL2RLS
+

RS

σLS
, σ := 1− M2

LRLS

RR and RS are, respectively, the rotor and stator resistances, LR and LS represent, respectively,
the rotor and stator inductances, M is mutual inductance constant, J is the moment of inertia
and np is the number of pole pairs. The signal τL is the unknown load torque perturbation
input. We adopt the complex notation like in Sira-Ramirez, Beltran-Carbajal & Blanco-Ortega
(2008). Define the following complex variables:

ψR = ψRa + jψRb = |ψR| ejθψ

uS = uSa + juSb = |uS| ejθu
iS = iSa + jiSb = |iS| ejθi

The induction motor dynamics is rewritten as

d2θ

dt2
= μIm(ψRiS)− τL(t)

d|ψR|2
dt

= −2η |ψR|2 + 2ηMRe
(
ψRiS

)
dθψ

dt
= npω +

RrM
Lr|ψR|2 Im(ψRiS)

diS
dt

= β(η + npω)ψR − γiS +
1

σLs
u
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where ψR denotes the complex conjugate of the complex rotor flux ψR.
We have, thus, established explicit, separate, dynamics for the squared rotor flux magnitude
and for the rotor flux phase angle. This representation, clearly exhibits a decoupling property of
the model which allows one to, independently, control the square of the flux magnitude and
the angular position by means of the stator currents acting as auxiliary control input variables.
This representation also establishes that the complex flux phase angle is largely determined
by the manner in which the angular position is controlled by the stator currents.
The problem formulation is as follows: Given the induction motor dynamics, given a desired
constant reference level for the rotor flux magnitude |ψ∗R| > 0, and given a smooth reference
trajectory θ∗(t) for the angular position of the motor shaft, the control problem consists in
finding a feedback control law for the phase voltages uSa and uSb in such a way that θ is forced
to track the given reference trajectory, θ∗ , while the rotor flux magnitude stabilizes around the
desired value, |ψ∗R|. Such objectives are to be achieved in spite of the presence of unknown
but bounded perturbation inputs represented by 1) the load torque, τL(t), in the rotor shaft
dynamics and 2) the effects of motor nonlinearities acting on the current dynamics through
possibly unknown parameters.

4. Control strategy

The GPI observer-controller design considerations will be based on the following simplified,
linear, models lumping the external load disturbances and the system nonlinearities in the
form of components of an unknown perturbation input vector, as follows:

d2θ

dt2
= μIm(ψRiS) + ξ1(t) (29)

d |ψR|2
dt

= −2η |ψR|2 + 2ηMRe
(
ψRiS

)
dθψ

dt
= npω +

RrM
Lr|ψR|2 Im(ψRiS)

diS
dt

=
1

σLs
uS + ξ(t) (30)

where ξ1(t) = −τL(t), ξ(t) = ξ2(t) + jξ3(t) are considered as disturbance inputs, with ξ1(t)
representing the unknown load perturbation input, and ξ(t) represents nonlinear and linear
additive dissipation terms, depending on the stator currents iSa, iSb and the angular velocity.
The currents iSa and iSb can be directly measured; on the other hand, rotor fluxes must
be estimated. For the flux estimation, we used a real time simulation of the rotor flux
equation dynamics. Parameters η, np, M need to be known; on the other hand, the lumped
parameter μ must be estimated. Nevertheless, in our control scheme, such a task is not
entirely necessary due to the remarkable robustness of the scheme and a reasonable guess
can be used in the controller expression for such parameters. The disturbance functions
ξ1(t), ξ(t) can be envisioned to contain the rest of the system dynamics, including some
un-modeled dynamics (which can be of a rather complex nonlinear character). In these terms,
we also lump disturbances of additive nature such as frictions and the effects generated by
parameter variations during the system operation and even the effects of inaccurate parameter
estimations. These perturbation inputs, however, do not contain any control terms.
For the correct tracking of angular position, it is necessary to provide additional control loops
for other variables. As it is customary, the flux modulus has to be regulated to a certain value
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in order to assure the efficient operation of the inductionmachine avoiding possible saturation
effects.
The proposed control scheme consists in a two stage feedback controller design. The first stage
controls the angular position of the motor shaft to track the reference signal θ∗(t) by means
of the stator currents taken as auxiliary control inputs. As a collateral objective it is desired to
have the flux magnitude converging towards a given constant value |ψ∗R|1. For this stage, the
control strategy is implemented by means of a GPI based observer controller, Cortés-Romero
et al. (2009). As a result of the first stage a set of desirable current trajectories is synthesized.
The obtained currents are thus taken as output references for the second multi-variable stage.
The second stage designs a discontinuous feedback controller to force the actual currents to
track the obtained current references in the first stage. In the second stage the stator voltages
are the control inputs. The following section deals with the flux reconstructor.

4.1 Flux reconstruction
Note that the complex rotor flux ψR satisfies the following dynamics:

dψR

dt
= −(η + jnpω)ψR + ηMiS

A simple reconstruction dynamics, with self stable reconstruction error dynamics, is given by

dψ̂R

dt
= −(η + jnpω)ψ̂R + ηMiS

The complex reconstruction error e = ψR − ψ̂R satisfies then the linear dynamics:

de
dt

= −(η + jnpω)e

whose unique eigenvalue has a strictly negative real part (and a time varying complex part).
Thus the complex error, e, satisfies e → 0 in an exponentially asymptotic manner. Thus,
henceforth, when we use ψ in the expressions it is implicitly assumed that it is obtained from
the proposed reconstructor undergoing the exponential convergence process ψ̂ → ψ.

4.2 Outer loop controller design stage
For this first design stage we consider the following dynamics:

d2θ

dt2
= μIm(ψRiS) + ξ1(t) (31)

d |ψR|2
dt

= −2η |ψR|2 + 2ηMRe
(
ψRiS

)
dθψ

dt
= npω +

RrM
Lr|ψR|2 Im(ψRiS)

(32)

with the complex stator current iS acting as auxiliary control input.
We propose the following complex controller:

1 Inaccurate parameters may cause minimal variations in the flux regulation, however, the angular
position remains unaffected due to the robustness of the controller.
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iS =
ψR

|ψR|2
[
|ψ∗R|2
M

+ jv

]
with |ψ∗R| being the desired flux magnitude reference value and v is an auxiliary control input.
In closed loop, the squared modulus of the rotor flux satisfies

d |ψR|2
dt

= −2η
[
|ψR |2 − |ψ∗R |2

]
then, |ψR| → |ψ∗R| = constant, in an exponential asymptotic manner.
On the other hand, the angular position dynamics satisfies, in closed loop, the perturbed
dynamics.

d2θ

dt2
= μv+ ξ1(t)

with ξ1(t) assumed to be time-varying, unknown but bounded signal, directly related to the
load torque, and v being a control input yet to be specified. The specification of the auxiliary
control input v is made on the basis of a GPI controller. With an abuse in the notation, we use
the following GPI observer based controller:

v =
1
μ

[
θ̈∗ − k1θs+ k0θ

s+ k2θ
(θ − θ∗)− ξ̂1

]
where ξ̂1 is the on-line estimate of the unknown signal ξ1(t). For the estimation of the
disturbance function ξ1(t), we assume that ξ1(t) is bounded with bounded low order
time derivatives and negligible higher order time derivatives. Such signals may be locally
approximated in a self-updated manner, thanks to the internal model principle, by a generic
representative of a family of time polynomial signals, of fixed finite, relatively low degree, and
free coefficients. Thus, modeling ξ1(t) by means of, say, a 5th degree family of polynomials,
the following GPI observer, containing a suitable internal model of the perturbation input, is
proposed:

dθ̂

dt
= λ7(θ − θ̂) + ˆ̇θ

d ˆ̇θ
dt

= λ6(θ − θ̂) + μv+ ρ1θ

ρ̇1θ = λ5(θ − θ̂) + ρ2θ

ρ̇2θ = λ4(θ − θ̂) + ρ3θ

ρ̇3θ = λ3(θ − θ̂) + ρ4θ (33)

ρ̇4θ = λ2(θ − θ̂) + ρ5θ

ρ̇5θ = λ1(θ − θ̂) + ρ6θ

ρ̇6θ = λ0(θ − θ̂)

ξ̂1 = ρ1θ

The estimation error is defined as eθ := θ − θ̂ satisfies the following injected dynamics:

e(8)θ + λ7e
(7)
θ + λ6e

(6)
θ + λ5e

(5)
θ + λ4e

(4)
θ

+ λ3e
(3)
θ + λ2 ëθ + λ1 ė1 + λ0eθ = ξ

(6)
1 (t)

146 Sliding Mode Control



By an appropriate choice of the coefficients, λi; i = 0, 1, . . . , 7 the characteristic polynomial in
the complex variable s

pξ̂1
(s) =s8 + λ7s

7 + λ6s
6 + λ5s

5 + λ4s
4

+ λ3s
3 + λ2s

2 + λ1s+ λ0

can be made into a Hurwitz polynomial. The estimation error is assured to be ultimately
bounded by a small disk around the origin in the estimating error state space which can be
further reduced by adjusting the observer gains to produce eigenvalues sufficiently far at the
left half of the complex plane. Under these circumstances, θ̂ → θ and ˆ̇θ → θ̇ modulo an
arbitrarily small error and, subsequently, it is clear that ρ1θ → ξ1 with the same convergence
rate (See Sira-Ramírez et al., Feliu-Battle, Sira-Ramirez, Feliu-Batlle, Beltran-Carbajal &
Blanco-Ortega (2008)).
The closed loop characteristic polynomial for the angular position tracking error response is
just:

pθ(s) = s3 + k2θs
2 + k1θs+ k0θ

while the characteristic polynomial governing the exponential convergence of the squared
norm of the flux towards the desired constant value, is given by

p|ψR|2(s) = s+ 2η

4.3 Inner loop controller design stage
Consider now the simplified perturbed stator currents dynamics (30):

diS
dt

=
1

σLS
uSav + ξ(t) (34)

We regard this simplified dynamics as an average perturbed representation of the stator
current dynamics which is to be regulated by means of a switched input voltages strategy,
similar in nature to those arising from the variable structure, slidingmode controller, approach
( the reader is referred to, Castillo-Toledo et al. (2008); Utkin et al. (1999) and references
therein).
Denote the three phase currents, and three phase voltages, respectively, by i1, i2, i3, and u1, u2,
u3. Define the stator current vector as an R2 vector with components, iSa, iSb, while the stator
voltage vector, is also defined as a vector with components: uSa, uSb, with the perturbation
vector also defined as: ξ = [ξ2 ξ3]

T. These quantities are transformed from the phase current
vector, i, the phase voltage vector, u, and the phase sliding surface, σ, as follows:

i =

⎡⎣i1i2
i3

⎤⎦ =

√
3
2

⎡⎣ 2/3 0
−1/3 1/

√
3

−1/3 −1/√3

⎤⎦ [
iSa
iSb

]
= P

[
iSa
iSb

]

u =

⎡⎣u1u2
u3

⎤⎦ =

√
3
2

⎡⎣ 2/3 0
−1/3 1/

√
3

−1/3 −1/√3

⎤⎦ [
uSa
uSb

]
= P

[
uSa
uSb

]

ξ =

√
3
2

⎡⎣ 2/3 0
−1/3 1/

√
3

−1/3 −1/√3

⎤⎦ [
ξ2
ξ3

]
= P

[
ξ2
ξ3

]
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Let us define the following vector sliding surface in operational calculus terms:

σ = [σ1 σ2 σ3]
T
= −

(
s+ z
s

)
ei (35)

ei = i− i∗(t)

and the switched control input is given by

u = Wsign(σ) = W

⎡⎣sign(σ1)sign(σ2)
sign(σ3)

⎤⎦ (36)

Proceeding as in the introductory example, let us consider the following Lyapunov candidate
function

V =
1
2

σTσ (37)

We have:

V̇ = σT σ̇ = −σTėi − zσTei (38)

ėi =
W

σLs
sign(σ) + ξ − di∗

dt
(39)

We have:

V̇ = −σTėi − zσTei = (40)

= − W
σLs

(|σ1|+ |σ2|+ |σ3|)− σTξ + σT di
∗

dt
− zσTei (41)

Thus, for a large enough voltages amplitudeW, the sliding condition σT σ̇ < 0 is satisfied and
the vector of phase sliding coordinates converges towards σ1 = 0, σ2 = 0, σ3 = 0, in, a finite
time under the switching control u.
The closed loop behavior under sliding mode condition can be obtained using the equivalent
control method. Using the invariance conditions σ = σ̇ = 0, we have:

ėi + zei = 0 (42)

Therefore, the tracking error converges to zero asymptotically. A schematic diagram of the
control methodology is given in figure 2.
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Fig. 2. Control schematics.

5. Experimental results

We illustrate the proposed control approach by some experiments on an actual induction
motor test bed. The experimental induction motor prototype includes the following
parameters: J = 4.5× 10−4 [Kg m2], np = 1, M = 0.2768 [H], LR = 0.2919 [H], LS = 0.2919
[H], RS = 5.12 [Ω], RR = 2.23 [Ω]. The flux absolute desired value was 0.5872 [Wb].
The sliding mode surface parameter was z = 350. The output of the sliding control was
filtered by means of a first order low pass filter of Bessel type with cut frequency of 750
rad/s. The angle measurement was obtained using an incremental encoder with 10000 PPR.
The desired closed loop tracking error was set in terms of the characteristic polynomial
Pθ(s) = (s2 + 2ζωn + ω2

n)(s+ p), with ζ = 1, ωn = 330, p = 320, and the observer injection
error characteristic polynomial was Pξ̂ = (s2 + 2ζ1ωn1 + ω2

n1)
4, with ζ1 = 2, ωn1 = 27.

The controller was devised in a MATLAB - xPC Target environment using a sampling
period of .1 [ms]. The communication between the plant and the controller was performed
by two data acquisition devises. The analog data acquisition was performed by a National
Instruments PCI-6025E data acquisition card, and the digital outputs as well as the encoder
reading for the position sensor were performed in a National Instruments PCI-6602 data
acquisition card. The voltage and current signals are conditioned for adquisition system by
means of low pass filters with cut frequency of 1 [kHz]. The interconnection of the modules
can be appreciated in a block diagram form as depicted in figure 3.
The output reference trajectory to be tracked, was set to be a biased sinusoidal wave of the
form:

θ∗ =
{

0 0 ≤ t < 2
1+ sin(t− π/2) 2 ≤ t ≤ 10 (43)

Figure 4 shows an accurate position tracking with respect to the desired trajectory. As we can
see in figure 5, the control loops indirectly regulate the flux magnitude whose error is under
5 × 10−3 [Wb]. The sliding mode control induces a slight high frequency wave envelope.
However, as depicted in figure 6, the average current tracks perfectly the desired reference
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currents in both phases (a and b). Notice that the control voltages (figure 7) are continuous,
but they remain affected by the discontinuities despite the filtering effect.
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Fig. 3. Block diagram of the control system
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Finally, to illustrate the robustness of the strategy, we applied a load torque with a voltage
controlled brake. The applied voltage was implemented by a variable resistor array, where its
value was randomly adjusted by a manual tuning. The disturbance estimation, as well as the
load torque observation and the auxiliary input v can be seen in figure 8.
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Fig. 5. Flux magnitude regulation.
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6. Concluding remarks

In this work, a combination of two control loops, one discontinous sliding mode control and
another based on the combination of GPI control and GPI disturbance observer was proven to
be quite suitable for robust position control and tracking tasks in an induction motor system.
An experimental test was carried out where the plant is subject to unforseen external
disturbances and un-modeled nonlinear state dependent perturbations. Here, we used the
disturbance estimates to carry out the disturbance rejection and for canceling the effects of
un-modeled disturbance inputs in the motor, in the case of the mechanical subsystem.
Since the strategy regulates the flux, as a collateral task, since the current variables are well
regulated, then the experimental flux variable showed accurate results.
The behavior of the proposed scheme is based upon the correct setting of the characteristic
polynomial of the observer which guarantees the correct cancelation of disturbance terms by
means of its estimation process.
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1. Introduction

The induction machine is widely used in industry, because of its mechanical robustness, low
maintenance requirement, and relatively low cost. However, from control point of view,
control of the induction machines is one of the most challenging topics. Its control is complex
because the dynamic of the induction machine is nonlinear, multivariable, and highly coupled.
Furthermore, there are various parameter uncertainties and disturbances in the system. The
rotor resistances, for example, can vary up to 100% because of rotor heating during operation.
In the last few years, many versions of a nonlinear state feedback control schemes, such as,
input-output feedback linearization ((Marino et al., 1993)), passivity-based control ((Ortega
& Espinoza, 1993; Ortega et al., 1996)) and Backstepping (Kanellakopoulos et al. (1991);
Krstic et al. (1995)) have been applied to the IM drive. Adaptive versions of most of those
nonlinear control schemes are also available for the effective compensation of the parameter
uncertainties and disturbances in the induction motor systems (Ebrahim & Murphy (2006);
Marino et al. (1993); Ortega et al. (1993); Rashed et al. (2006)). A fundamental problem in
the design of feedback controllers is that of stabilizing and achieving a specified transient
performance in the presence of external disturbances and plant parameter variations.
Since the publication of the survey paper by (Utkin (1977)), significant interest on Sliding
mode control has been generated in the control research community worldwide. This
interest is increased in the last two decades due to the possibility to implement this control
in industrial applications with the advances of the power electronics technology and the
availability of cheap and fast computation.
One of the most intriguing aspects of sliding mode is the discontinuous nature of the control
action whose primary function of each of the feedback channels is to switch between two
distinctively different system structures (or components) such that a new type of system
motion, called sliding mode, exists in a manifold. This peculiar system characteristic is
claimed to result in superior system performance which includes insensitivity to parameter
variations, and complete rejection of disturbances (Young et al. (1999)).
In this paper, a nonlinear adaptive Sliding mode speed and rotor flux control scheme
combined with field orientation for the induction-motor drive has been developed. Some
sliding surfaces are chosen for which an appropriate logic commutation associated to these
surfaces is determined. One important characteristic of the proposed controller is its cascade
structure; witch gives a high performance using simple sliding surfaces. Furthermore, in order
to reduce chattering phenomenon, smooth control functions with appropriate threshold have
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been chosen. The rotor flux is estimated using the rotor-circuit model and, thus, is insensitive
to the stator resistance. A stable model reference adaptive system (MRAS) rotor-resistance
and load torque estimators have been designed using the measured stator current and rotor
speed, and voltage command.

2. Indirect field-oriented control of the IM

Assuming linear magnetic circuits and balanced three phase windings, the fifth-order
nonlinear model of IM (Krauss (1995)), expressed in the stator frame is :

dω

dt
=

3npLm

2JL2
(λ2ai1b − λ2bi1a) − TL

J
dλ2a

dt
= −R2

L2
λ2a − npωλ2b +

R2
L2

Lmi1a

dλ2b
dt

= −R2
L2

λ2b + npωλ2a +
R2
L2

Lmi1b (1)

di1a
dt

=
LmR2

σL1L2
2

λ2a +
npLm

σL1L2
ωλ2b −

L2
mR2 + L2

2R1

σL1L2
2

i1a+
1

σL1
u1a

di1b
dt

=
LmR2

σL1L2
2

λ2b −
npLm

σL1L2
ωλ2a −

L2
mR2 + L2

2R1

σL1L2
2

i1b+
1

σL1
u1b

We can see that the model described by (1) is highly coupled, multivariable and nonlinear
system. It is very difficult to control the IM directly based on this model. State transformation
to simplify the system representation is required. A well-known method to this end is
the transformation of the field orientation principle. It involves basically a change of
the representations of the state vector (i1a, i1b, λ2a, λ2b) in the fixed stator frame (a, b) into
a new state vector in a frame (d, q) which rotates along with the flux vector (λ2a, λ2b).
Mathematically, the field oriented transformation can be described as:

i1d =
λ2ai1a + λ2bi1b√

λ2
2a + λ2

2b

, i1q =
λ2ai1b − λ2bi1a√

λ2
2a + λ2

2b

(2)

λ2d =
√

λ2
2a + λ2

2b, λ2q = 0, ρ = arctan
(

λ2b
λ2a

)

Where much simplification is gained by the fact that λ2q = 0 . Using this transformation and
the notations in the Nomenclature, the state equations (1) can be rewritten in the new state
variables as:

dw
dt

= μλ2di1q − TL
J

di1q

dt
= −η1i1q − βnpωλ2d − npωi1d − R2(η2i1q+αLm

i1qi1d

λ2d
) +

1
σL1

u1q

λ2d
dt

= −αR2λ2d + αLmR2i1d
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di1d
dt

= −η1i1d + npωi1q + R2(−η2i1d + αβλ2d + αLm
i21q

λ2d
)+

1
σL1

u1d (3)

dρ

dt
= npω + αLmR2

i1q

λ2d

The decoupling control method with compensation is to choose inverter output voltages such
that:

u∗
1d =

(
Kp + Ki

1
s

)
(i∗1d − i1d) − ρL1σi∗1q + L1σ

di∗1q

dt

u∗
1q =

(
Kp + Ki

1
s

)(
i∗1q − i1q

)
+ ρL1σi∗1d + ρ

Lm

L2
λ̂2d (4)

Where Kp, Ki are PI controller gains.
For that, we need the estimation of the rotor flux as given by

˙̂λ2d = −αR̂2λ̂2d + αLmR̂2i1d (5)

Fig.1 shows the implemented diagram of an induction motor indirect field-oriented control
(IFOC).
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iq
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Fig. 1. bloc diagram of IFOC for the IM

3. Cascade sliding mode control

From the above IFOC structure, the sliding mode control mechanisms for the rotor angular
speed regulation and the flux generation can be better applied to replace the traditional
nonlinear feedback PI control of the field oriented control technique for better performance.
Basically, the sliding mode control objectives consist mainly of the following steps:
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3.1 Design of the switching surfaces
We choose the sliding surface to obtain a sliding mode regime which guarantees the
convergence of the state x to its desired value xd according to the relation (6) (Slotine & Li
(1991):

S(x) =
(

d
dt

+ λ

)r−1
e (6)

Where e = xd − x: tracking error
λ: positive coefficient
r: relative degree
Such in IFOC structure, we have four PI controllers; we will define four sliding surfaces
(Mahmoudi et al. (1999)):

S1 (ω) = ωre f − ω

S2 (λ2d) = λ2dre f − λ2d

S3
(
i1q

)
= i∗1q − i1q (7)

S4 (i1d) = i∗1d − i1d

3.2 Control calculation
Two parts have to be distinguished in the control design procedure. The first one concerns the
attractivity of the state trajectory to the sliding surface and the second represents the dynamic
response of the representative point in sliding mode. This latter is very important in terms
of application of nonlinear control techniques, because it eliminates the uncertain effect of the
model and external perturbation. For that, the structure of a sliding mode controller includes
two terms:

uc = ueq + un (8)

Where
-ueq is called equivalent control which is used when the system state is in the sliding mode. It
is calculated from Ṡ (x) = 0.
-un is given to guarantee the attractivity of the variable to be controlled towards the
commutation surface. This latter is achieved by the condition (Slotine & Li (1991); Utkin
(1993)).

S (x) .Ṡ (x) < 0 (9)

A simple form of the control action using sliding mode theory is a relay function; witch has a
discontinuous form given by:

un = −k.sgn (S (x)) (10)

k is a constant and is chosen positive to satisfy attractivity and stability conditions.
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3.2.1 For the rotor flux regulation

Ṡ2 (λ2d) = 0 ⇒ i1deq =
λ2d + Trλ̇2dre f

Lm
(11)

Ṡ2 (λ2d) S2 (λ2d) < 0 ⇒ i1dn = Kφ.sign (S2 (λ2d)) (12)

Thus the controller is

i1dc = i1deq + i1dn (13)

3.2.2 For the direct current regulation

Ṡ4 (i1d) = 0 ⇒
u1deq = σL1 i̇1dre f + Rsmi1d − σL1ωsi1q − Lm

L2Tr
λ2d

(14)

Ṡ4 (i1d) S4 (i1d) < 0 ⇒ u1dn = Kd.sign (S4 (i1d)) (15)

The controller is given by

u1dc = u1deq + u1dn (16)

3.2.3 For the speed regulation

Ṡ1 (ω) = 0 ⇒ i1qeq =
Jω̇re f + Fω + TL

pLm
L2

λ2d
(17)

Ṡ1 (ω) S1 (ω) < 0 ⇒ i1qn = Kω .sign (S1 (ω)) (18)

The controller is given by

i1qc = i1qeq + i1qn (19)

3.2.4 For the quadrature current regulation

Ṡ3
(
i1q

)
= 0 ⇒

u1qeq = σL1 i̇1qre f + Rsmi1q + σL1ωsi1d +
Lm

L2
ωλ2d

(20)

Ṡ3
(
i1q

)
S3

(
i1q

)
< 0 ⇒ u1qn = Kq.sign

(
S3

(
i1q

))
(21)

The controller is given by

u1qc = u1qeq + u1qn (22)

To satisfy stability condition of the system, all of the following gains (Kd, Kq, Kφ, Kω) should
be chosen positive.
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4. Load torque estimator

Since the load torque is not exactly known, its estimation is introduced. The mechanical
equation gives

T̂L =
pLm

L2
λ2di1q − J

dω

dt
− Fω (23)

5. Mras rotor resistance identification

As the estimated rotor flux is sensitive to rotor-resistance variation, a stable rotor-resistance
MRAS estimator can be developed. We can rewrite the dynamic model of an induction
motor given before by equations (11) as a compact form given by (Leonhard (1984); Pavlov
& Zaremba (2001)) :

dw
dt

=
3
2

npLm

JL2
iT
1 Mλ2 − TL

J
(24)

dλ2
dt

=
(
−R2

L2
I + npwM

)
λ2 +

R2
L2

Ji1 (25)

di1
dt

= − J
σL1L2

(
−R2

L2
I + npwM

)
λ2 − 1

σL1

(
R1 +

J2R2

L2
2

)
i1 +

1
σL1

u1 (26)

Where

I =
(

1 0
0 1

)
, M =

(
0 −1
1 0

)

In order to design a rotor resistance identifier equations (25) (26) are transformed to eliminate
the unobservable rotor flux. At this point an assumption is made that the rotor speed changes
significantly slower relative to the rotor flux. Thus it may be treated as a constant parameter.
First differentiating (26) and eliminating λ2 gives

d2i1
dt2 = (α1 I + wβ1 M)

di1
dt

+ (α2 I + wβ2 M) i1 + (α3 I + wβ3 M) u1 + α4
du1
dt

(27)

where

α1 = − 1
σL1

(
R1 +

L2
mR2

L2
2

)
− R2

L2
, β1 = np,

α2 = − R2R1
σL2L1

, β2 =
npR1

σL1
,

α3 =
R2

σL1L2
, β3 = − np

σL1
, α4 =

1
σL1

.

Adding cdi1/dt, c > 0, to both sides of (27) and formally dividing by (d/dt + c) transforms
(27) to

di1
dt

= a + ωb + ε (28)
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where ε → 0 exponentially and the functions a and b are linear combinations of the filtered
stator current and stator voltage command:

a = (c + α1) i11 + α2i10 + α3u10 + α4u11

b = M (β1i11 + β2i10 + β3u10)

where

i10 =
1

s + c
i1, i11 =

s
s + c

i1

u10 =
1

s + c
u1, u11 =

s
s + c

u1 (29)

Here s denotes d/dt.
To obtain a reference model for the rotor resistance identification the part of the right-hand
side of (28) containing R2 is separated:

di1
dt

= f1 + R2 f2 + ωM f3 + ε (30)

where

f1 = (c + ρ1) i11 + ρ2u11

f2 = γ1i11 + γ2i10 + γ3u10 (31)

f3 = β1i11 + β2i10 + β3u10

Coefficients in (31) are calculated according to the following formulae:

ρ1 = − R1
σL1

, ρ2 =
1

σL1
,

β1 = np, β2 =
npR1

σL1
, β3 = − np

σL1
,

γ1 = − 1
L2

(
1 +

L2
m

σL1L2

)
, γ2 =

ρ1
L2

, γ3 =
ρ2
L2

.

Since ω is available for measurement the design of an R2 identifier is straightforward. It
is based on the MRAS identification approach (Sastry & Bodson (1989)) with(30) being a
reference model.
Within this approach an identifier consists of a tuning model depending on an estimate of the
unknown parameter and a mechanism to adjust the estimate. This adjustment is performed
to make the output of the tuning model asymptotically match the output of the reference
model. In our case the tuning model is given by

dî1
dt

= −L
(
î1 − i1

)
+ f1 + ωM f3 + R̂2 f2 (32)

where L > 0 is a constant and R̂2 is the estimate of R2. The dynamics of the error e = î1 − i1 is
the following

de
dt

= −Le +
(

R̂2 − R2
)

f2 − ε (33)
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The adjustment equation for R̂2 is

dR̂2
dt

= −γ
(
î1 − i1

)T f2, γ > 0. (34)

Fig. 2. Overall bloc diagram of the control scheme for IM

6. Simulations results

The overall configuration of the control system for IM is shown in Fig.2. The effectiveness
of the proposed controller combined with the rotor resistance and load torque estimations
has been verified by simulations in Matlab/Simulink. The parameters of the induction motor
used are given in Appendix. The simulation results have been obtained under a constant load
torque of 10 Nm.
Parameters of the Sliding mode controllers are: Kd = 500, Kq = 500, Kφ = 400 and Kω = 300.
Parameters of the MRAS identifier are: γ = 0.2, L = 100 and c = 0.01.
Results obtained are shown in Fig.3. The reference speed is set to 200 rad/s until t=4s, when it
is reversed to -200rad/s to allow drive to operate in the generating mode. The reference flux
is set to 0.4wb. The load torque is changed from 0 to 10 Nm at t=0.6s. The rotor resistance
and the load torque estimators are activated. It can be seen that the estimated load torque
converges very quickly to the actual value. In addition, the estimated values of R2 follow its
actual value very closely.
In order to show the convergence capability of the MRAS rotor resistance estimator, at t=1.2
s, the interne value of R2 in the MAS model has been disturbed and varied intentionally 30%
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of its initial value and held constant until t=2.5s, at the same moment, the rotor resistance
estimator is disconnected from the control structure.
It can be noted that the error in the estimated value of R2 produces a steady state error in the
speed and the rotor flux control and also generates an error in the estimated value of the load
torque.
At t=2.5s, the initial value of R2 in MAS model has restored and the rotor resistance estimator
has been reconnected and the rotor resistance is seen to converge to the actual value and also
the other system variables.
At t=4s, the reference speed is reversed to -200 rad/s to allow the drive to operate in the
generating mode.
The results show a stable operation of the drive in the various operating modes.
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Fig. 3. Tracking Performance and parameters estimates : a)reference and actual motor
speeds, b)reference and actual rotor flux, c)TL and T̂L(N.m), d)R2 and R̂2(Ω).
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Furthermore, simulation results have been performed to show the capability of the load torque
estimator to track the rapid load torque changes and also to show the performance of flux and
speed control. The results are shown in Fig. 4. These results have been obtained using the
same parameters used for the results in Fig. 3. The rotor resistance and load torque estimators
are activated at t=0.2s. The load torque has been reversed from 10 Nm to -10 Nm at t=2s. It
can be seen from Fig. 4 that the estimated load torque converges rapidly to its actual value
and the rotor resistance estimator is stable. In addition, the results in Fig. 4 show an excellent
control of rotor flux and speed.
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Fig. 4. Tracking Performance and parameters estimates : a)reference and actual motor
speeds, b)reference and actual rotor flux, c)TL and T̂L(N.m), d)R2 and R̂2(Ω).

Thus, the simulation results confirm the robustness of the proposed scheme with respect to
the variation of the rotor resistance and load torque.
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7. Conclusions and future works

In this paper, a novel scheme for speed and flux control of induction motor using online
estimations of the rotor resistance and load torque have been described. The nonlinear
controller presented provides voltage inputs on the basis of rotor speed and stator currents
measurements and guarantees rapid tracking of smooth speed and rotor flux references for
unknown parameters (rotor resistance and load torque) and non-measurable state variables
(rotor flux). In simulation results, we have shown that the proposed nonlinear adaptive
control algorithm achieved very good tracking performance within a wide range of the
operation of the IM. The proposed method also presented a very interesting robustness
properties with respect to the extreme variation of the rotor resistance and reversal of the
load torque. The other interesting feature of the proposed method is that it is simple and easy
to implement in real time.
From a practical point of view, in order to reduce the chattering phenomenon due to the
discontinuous part of the controller, the sign(.) functions have been replaced by the saturation
functions (.)

(. )+0.01 (Slotine & Li (1991).
It would be meaningful in the future work to implement in real time the proposed algorithm
in order to verify its robustness with respect to the discretization effects, parameter
uncertainties and modelling inaccuracies.

Induction motor data
Stator resistance 1.34 Ω
Rotor resistance 1.24 Ω
Mutual inductance 0.17 H
Rotor inductance 0.18 H
Stator inductance 0.18 H
Number of pole pairs 2 H
Motor load inertia 0.0153 Kgm2

Nomenclature
R1, R2 rotor, stator resistance
i1, i2 rotor, stator current
λ1, λ2 rotor, stator flux linkage
λ2d amlpitude of rotor flux linkage
u1, u2 rotor, stator voltage input
ω rotor angular speed
ωs stator angular frequency
ρ rotor flux angle
np number of pole pairs
L1, L2 rotor, stator inductance
Tr rotor time constant
Lm mutual inductance
J, TL inercia, load torque
F coefficient of friction
(.)d, (.)q in (d,q) frame
(.)a, (.)b in (a,b) frame
(.̂) estimate of (.)
(.∗) reference of (.)
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σ = 1 − L2
m

L1L2
, α =

1
L2

, β =
Lm

σL1L2
, η1 =

R1
σL1

η2 =
L2

m
σL1L2

2
, μ =

3npLm

2JL2
, Rsm = R1 +

L2
m

L2
2

R2
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1. Introduction 
Variable structure control (VSC) with sliding mode control (SMC) was first proposed and 
elaborated in early 1950 in USSR by Emelyanov and several co researchers. VSC has 
developed into a general design method for wide spectrum of system types including 
nonlinear system, MIMO systems, discrete time models, large scale and infinite dimensional 
systems (Carlo et al., 1988; Hung et al., 1993; Utkin, 1993). The most distinguished feature of 
VSC is its ability to result in very robust control systems; in many cases invariant control 
systems results. Loosely speaking, the term “invariant” means that the system is completely 
insensitive to parametric uncertainty and external disturbances.  
In this chapter the unified approach to the design of the control system (speed, Torque, 
position, and current control) for DC machines will be presented. This chapter consists of 
parts: dc motor modelling, sliding mode controller of dc motor i.e. speed control, torque, 
position control, and current control. As will be shown in each section, sliding mode control 
techniques are used flexibly to achieve the desired control performance. All the design 
procedures will be carried out in the physical coordinates to make explanations as clear as 
possible. Drives are used for many dynamic plants in modern industrial applications. 
The simulation result depicts that the integral square error (ISE) performance index for 
reduced order model of the system with observer state is better than reduced order with 
measured state. 
Simulation results will be presented to show their agreement with theoretical predications. 
Implementation of sliding mode control implies high frequency switching. It does not cause 
any difficulties when electric drives are controlled since the “on –off” operation mode is the 
only admissible one for power converters. 

2. Dynamic modelling of DC machine 
Fig. 1 shows the model of DC motor with constant excitation is given by following state 
equations (Sabanovic et al., 1993; Krause, 2004). 
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Fig. 1. Model of DC motor with constant excitation. 

 
0

t l

diL u Ri w
dt

dwj k i
dt

λ

τ

= − −

= −

 (1) 

where 
i  armature current 
w  shaft speed 
R  armature resistance 

0λ  back emf constant 
lτ  load torque 

u  terminal voltage 
j  inertia of the motor  rotor  and load 
L  armature inductance 

tk  torque constant. 
Its motion is governed by second order equations (1) with respect to armature current i  and 
shaft speed w with voltage u  and load torque tk . A low power-rating device can use 
continuous control. High power rating system needs discontinuous control. Continuously 
controlled voltage is difficult to generate while providing large current. 

3. Sliding mode control design 
DC motors have been dominating the field of adjustable speed drives for a long time 
because of excellent operational properties and control characteristics. In this section 
different sliding mode control strategies are formulated for different objectives e.g. current 
control, speed control, torque control and position control. 

3.1 Current control  
Let *i  be reference current providing by outer control loop and i  be measured current.  
Fig. 2 illustrates Cascaded control structure of DC motors. 
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Consider a current control problem, by defining switching function 

 *s i i= −  (2) 

Design a discontinuous control as  

 0 ( )u u sign s=  (3) 

Where 0u  denotes the supplied armature voltage.  

 
*

0
0

0

1( )di Rss s i w u s
dt L L L

λ
= + + −  (4) 

Choice of control 0u   as  

*

0 0
diu L Ri w
dt

λ> + +    Makes (4) 

0ss <  Which means that sliding can happen in 0s = . 
 

 
Fig. 2. Cascaded control structure of DC motors.  

3.2 Speed control  
*w be the reference  shaft speed, then the second order motion equation  with respect to the 

error *e w w= −  is of form. State variable 1 2&x e x e= =  

 1 2

2 1 1 2 2 ( )
x x
x a x a x f t bu

=
= − − + −

 (5) 

Where 

0
1 2, &t tk kRa a b

jL L jL
λ

= = =  

* *
2 1( ) l lRf t w a w a w

jL j
τ τ

= + + + +  

are constant values. 
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The sliding surface and discontinuous control are designed as  

 * *( ) ( )ds c w w w w
dt

= − + −  (6) 

0 ( )u u sign s=  

This design makes the speed tracking error e  converges to zero exponentially after sliding 
mode occurs in 0s = , where c is a positive constant determining the convergence rate for 
implementation of control (6), angle of acceleration 2x e=  is needed. The system motion is 
independent of parameters 1 2, ,a a b and disturbances in g(t).  
Combining (1) & (6) produces  

 

* 1( ) ( )

( )

t t
t l l t

t

k kcs cw w k Ri k w u
j j jL jL

kg t u
jL

τ τ= + − − + + + −

= −

 (7) 

 * 1( ) ( ) ( )t t
t l l t

k kcg t cw w k Ri k w u
j j jL jL

τ τ= + − − + + + −  (8) 

 0 ( ) ,   0
t

jLif u g t ss
k

> <  (9) 

Then sliding mode will happen (Utkin,1993). 
The mechanical motion of a dc motor is normally much slower then electromagnetic 
dynamics. It means that L j<<  in (1).  
a. Reduced -order Speed control with measured   speed 
Following reduced order control methods proposed below will solve chattering problem 
without measuring of current and acceleration 2( )x . 
Speed tracking error is *

ew w w= − . The dc motor model (1) in terms of ew : 

 

*
0

*

( )    

     

e

e
t l

diL u Ri w w
dt

dwj k i jw
dt

λ

τ

= − − −

= − + +
 (10) 

Let L be equal to zero due to L j<< . Then (10) becomes with 0L =   

 * *0 ( ) t
e l

ki w w u jw
R R
λ

τ= − − − + +  (11) 

Substituting (11) into (10) results in 

 * *0 ( )e t t
e l

dw k kj w w u jw
dt R R

λ
τ= − − + +  (12) 

Equation (12) is a reduced order (first order) model of dc motor. The discontinuous control 
is designed as 
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 0 ( )eu u sign w=  (13) 

and the existence  condition for the sliding mode 0ew =  will be  

 
*

*
0 0( ) l

e
t t

jRwRu w w
k k
τ

λ> − + +  (14) 

The principle advantage of the reduced order based method is that the angle acceleration 
2( )x e=  is not needed for designing sliding mode control (Carlo et al.,1988). 

b. Reduced -order Speed control with observer speed 
The unmodelled dynamics (1) may excite non-admissible chattering. 
Let us design an a asymptotic observer to estimate ew  (Utkin,1993). 

 

* *0
1

* *0

*
2

ˆ ˆ ˆˆ( ) ( )

( )

ˆ
( )

e t t
e l e

e t t
e l

l
e

dw k kj w w u jw l w w
dt R R

dw k kj w w u jw
dt R R

d l w w
dt

λ
τ

λ τ

τ

= − − + + − −

= − − + +

= − −

 (15) 

where  
ˆ ew   Estimated error  

ˆe e ew w w= −  Speed tracking error  
1 2,l l   Observer gain  

The discontinuous control designed using estimate state ˆ ew  (Utkin,1993) will be 

 0 ˆ( )eu u sign w=  (16) 

The sliding mode will happen if 

 
*

* *1
0 0

ˆˆ( ) ( )l
e e

t t t

jRwR l Ru w w w w
k k k
τ

λ> − + + + −  (17) 

And  ˆ ˆ0 & 0w τ= = . 
Under the control scheme, chattering is eliminated, but robustness provided by the sliding 
mode control is preserved within accuracy of 1L

j
<< . The observer gains 1 2,l l  should be 

chosen to yields mismatch dynamics slower than the electrical dynamics of the dc motors to 
prevent chattering. Since the estimated ŵ  is close to w , the real speed w  tracks the desired 
speed *w . Fig. 3 shows the control structure based on reduced order model and observed 
state. Chattering can be eliminated by using reduce observer states. The sliding mode occurs 
in the observer loop, which does not contain unmodelled dynamics. 

3.3 Position control 
To consider the position control issue, it is necessary to augment the motor equations (1) with 
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Fig. 3. Speed control based on reduced order model and observed state. 

 d w
dt
θ
=  (18) 

where θ denotes the rotor position. 
The switching function s for the position control is selected as  

 * * *
1 2( ) ( ) ( )s c cθ θ θ θ θ θ= − + − + −  (19) 

and the discontinuous control is  

 0 ( )u u sign s=  (20) 
Combining (1), (18), (19) 

 ( ) tks h t u
jL

= −  (21) 

where  

 * * * 1
1 2 2

1( ) ( ) ( )t
t l l t

kch t w c w c w k i c w Ri k w
j j jL

τ τ= + + − − − + + +  (22) 

Choice of 0u as 

 0 ( )
t

jLu h t
k

>  (23) 

Makes 0ss <  which means that sliding mode can happen 0s = with properly chosen 
1 2,c c .We can make velocity tracking error  *e w w= −  converges to zero. 

3.4 Torque control    
The torque control problem by defining switching function  

 *s τ τ= −  (24) 
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As the error between the reference torque *τ and the real torque τ  developed by the motor. 
Design a discontinuous control as  

 0 ( )u u sign s=  (25) 

Where 0u  is high enough to enforce the sliding mode in 0s = , which implies that the real 
torque τ tracks the reference torque *τ . 

 

*

* 0

( )

t

t t t

t

s k i
k Ri k w k u

L L L
kf t u
L

τ
λ

τ

= −

= + + −

= −

 (26) 

Where   
* 0( ) t tk Ri k wf t

L L
λ

τ= + +    

depending on the reference signal for  

 
0

0

( )

( ) 0

t

t

Lu f t
k

kss sf t u s
L

>

= − <

 (27) 

So sliding mode can be enforced in 0s = . 

4. Simulation results 
4.1 Simulation results of current control 
Examine inequality (2 & 4), if reference current is constant, the link voltage 0u  needed to 
enforce sliding mode should be higher than the voltage drop at the armature resistance plus 
back emf, otherwise the reference current *i  cannot be followed. 
Figure 4 depicts a simulation result of the proposed current controller. The sliding mode 
controller has been already employed in the inner current loop thus, if we were to use 
another sliding mode controller for speed control, the output of speed controller *i  would 

be discontinuous, implying an infinite 
*

di
dt

 and therefore destroying in equality (4) for any 

implement able 0u   

4.1 Simulation results of speed control 
To show the performance of the system the simulation result for the speed control of dc 
machine is depicted. Rated parameters of the dc motor used to verify the design principle 
are 5hp, 240V, R=0.5Ω, L=1mH, j=0.001kgm2, 0.008NmA-1 tk = , -1

0 0.001v rad s  λ =  and 
l Bwτ =  where B=0.01 Nm rads-1. 

Figure 5 depicts the response of sliding mode reduced order speed control with measured 
speed. It reveals that reduced order speed control with measured speed produces larger 
overshoot & oscillations. 
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Fig. 4. Cascade current control of dc motor. 
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Fig. 5. Response of sliding mode reduced order speed control with measured speed. 
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Figure 6 depicts the response of sliding mode reduced order speed control with observer 
speed. It reveals that reduced order speed control with observer speed produces smaller 
overshoot & less oscillation. 
Fig. 7(a), 7(b), 7(c) & 7(d) depicts the simulation result of response of sliding mode speed 
control, variation of error, squared error and integral square error (ISE) with reference speed 
of 75 radian per sec respectively. Fig. 8 reveals that variation of the controller for reduced 
order speed control with observed speed at load condition. Fig. 9 reveals that variation of 
the controller for reduced order speed control with measured speed at load condition.      
Fig. 10 depicts the response of sliding surface in sliding mode control. Fig. 11 depicts the 
robustness (insensitivity) to parameters (+10%) variation. Fig. 12 depicts the robustness 
(insensitivity) to parameters (-10%) variation. The high frequency chatter is due to 
neglecting the fast dynamics i.e. dynamics of the electric of the electric part. In order to 
reduce the weighting of the large initial error & to Penalise small error occurring later in 
response move heavily, the following performance index is proposed.The integral square 
error (ISE) is given by (Ogata,1995). 

 2

0

ISE ( )
T

e t dt= ∫  (28) 

The minimum value of ISE is obtained as gain tends to infinity. 
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Fig. 6. Response of sliding mode reduced order speed control with observer speed. 
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5. Conclusions 
The SMC approach to speed control of dc machines is discussed. Both theoretical and 
implementation result speed control based on reduced order with measured speed and 
reduced order with observer speed, using simulation are conducted. Besides, reduced order 
observer deals with the chattering problem, en-counted often in sliding mode. Control area 
Selection of the control variable (angular position, speed, torque) leaves basic control 
structures unchanged. Inspection of Fig. 7(a), 7(b), 7(c) & 7(d) reveals that reduced order 
speed control with observer speed produces smaller overshoot & oscillation than the 
reduced order speed with measure speed (Panchade et al.,2007). The system is proven to be 
robust to the parameters variations, order reduction, fast response, and robustness to 
disturbances. 
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Fig. 7. (a) Response of the sliding mode speed control with reference speed 75 radian per 
sec. (b) The variation  error with reference speed 75 radian per sec. (c) The variation of 
squared error with reference speed  75 radian per sec (d) Integral square error (ISE) 
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Fig. 8. Variation of the controller for reduced order speed control with observed speed at 
load condition 
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Fig. 9. Variation of the controller for reduced order speed control with measured speed at 
load condition 
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Fig. 10. Response of sliding surface in sliding mode speed  control. 
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Fig. 11. Robust (Insensitivity) to parameters (+10%) variation. 
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1. Introduction 
More than never, the automation of industrial processes has high technical requirements. 
Today, most of the fabrication processes must operate with an efficient and precise control 
of different parameters like: velocity, position and torque. Simultaneously, the controller 
must be immune enough to the outside world perturbations typically found in industry. At 
the same time, the kind of movement required by today processes is beyond the simple 
rotational configuration. Linear actuators are making their appearance in the industry, being 
already a reality and a truly available option that designers and engineers can consider. The 
traditional conversion method used to transform rotational motion into linear displacement 
is no more acceptable. In the old days, linear displacement was obtained from a rotational 
motor shaft, after mechanical conversion by a specific mechanism containing pulleys, worm 
gears and belts. The presence of these components diminishes the robustness and reliability 
of the industrial processes. 
The ac induction motor has good robustness and low fabrication cost. Over the past decades 
it has replaced, with great success, the conventional brushed DC motor in servo-type 
applications. Although this change allowed process reliability improvement, for instance, 
problems related with the motor brushes are eliminated, the introduction of an electronic 
power drive increases systems complexity, raising other problems. 
The switched reluctance machine (SRM) can be classified as a current-controlled stepping 
motor of the variable-reluctance type. This technology is one of the most recent options in 
the field of variable speed actuators. Consumer products, aerospace, and automobile 
industries are today taking advantage from SRM drives characteristics. 
Advances in power electronics and the use of microelectronics and microprocessors allowed 
the development of different control strategies, such as nonlinear, adaptive, variable 
structure, and fuzzy, contributing to the popularity that SRM drives actually enjoy. 
The SRM is a rugged and reliable actuator, that can be produced at a low cost, presents a 
simple and robust structure and can operate in a wide speed range, in all four-quadrant, 
without a considerable reduction of efficiency. These characteristics make it an attractive 
alternative to permanent-magnet brushless and induction motor drives (Corda, J. et al. 
(1993)). Its main constructive characteristic is the absence of winding on the rotor of the 
machine, giving it a potential advantage over conventional machines. Furthermore, the SRM 
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combines different advantages, such as high power density, low-cost maintenance, the 
ability to operate even with a phase shorted or opened, and the possibility of direct drive 
without mechanical transmissions. The power converter design can be very simplified 
because of the unidirectional stator current. Although most of the control strategies applied 
to the SRM require the perfect knowledge of rotor position, sensorless operation techniques 
can also be adopted to control it (Gan, C. et al. (2003)), (Espírito Santo et al. (2005)), (Espírito 
Santo et al. (2008)).  
Nevertheless, the control complexity of these actuators, the high torque ripple presented in 
output and the acoustic noise produced under normal operation, until recent years, lead to 
some lack of interest in adopting SRM as a driving technology.  
The output power density is increased when the SRM is operated with high saturation 
levels. Because of this, the SRM flux linkage, inductance, back EMF and phase torque, are 
highly nonlinear parameters. Furthermore, the SRM cannot operate directly from an AC or 
DC power supply, requiring a specific electronic controller. 
This chapter describes the development of a sliding mode position controller for a linear 
switched reluctance actuator (LSRA). The main goal of the presented chapter is to control 
the position of the primary of the actuator. The actuator test bench used is shown in Fig. 1. 
The remaining of this chapter describes the energy conversion process of a LSRA. Based on 
a finite elements analysis, both traction and attraction maps are derived. This information is 
useful to understand the device working principle and its performance for different 
excitation and working conditions. The proposed control strategy, based on the sliding 
mode control technique, and the electronics to drive the LSRA are described. The control 
strategy was implemented with the TMS320F2812 eZdsp Start Kit, taking advantage of the 
microprocessor internal peripherals and resources. Finally, the validation of the proposed 
control strategy is discussed through the presentation of experimental results.  
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Fig. 1. Actuator experimental test bench. 
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2. The switched reluctance actuator 
2.1 Introduction to the switched reluctance working principle 
The SRM working principle takes advantage from the fact that an electromagnetic system 
always tries to adopt the geometrical configuration corresponding to the minimum 
reluctance of the magnetic circuit. In the beginning of the IXX century, scientists from all 
over the world performed experiments in this field, trying to use the magnetic reluctance 
principle to produce a continuous movement. The first reference to a SRM appears in a 
scientific paper published in 1969 by Nasar (Nasar, S. A. (1969)). The first SRM was 
commercially available in the UK in 1983, and was marketed by TASC Drivers. 
In 1838, W.H. Taylor registered two patents of an electromagnetic motor, one in the U.S and 
the other in the UK (Taylor, W.H. (1840)). Another pioneer in this field was the Scottish 
engineer Robert Davidson that, in 1838, developed an actuator based in the switched 
reluctance principle. The actuator constructed by him was used to power an electric 
locomotive in the Edimburgo-Glasgow railway. Two patents registered in the U.S. by B.D. 
Bedford and R.G. Hoft, in 1971 and 1972, describe some of the functionalities that can be 
found in actual SRMs. For instance, the regulation electronics is synchronized with the rotor 
position. With this information, the motor phases are sequentially energized. Another 
important step was performed by L. E. Unnewehr and W. H. Koch, from Ford Motor 
Company Scientific Research Staff Company; they developed an axial SRM controlled by 
thyristors (Unnewehr, L. E. et al. (1974)). In Europe, others researchers registered several 
patents, e.g., J. V. Byrne and P. J. Lawrence (Byrne, J.V. (1979)), (Byrne , J.V. et al. (1976)). 
A SRM can be used to produce a rotational movement, a linear displacement, or a more 
complex combination of these movements. The machine primary can be inside of the 
structure, or outside, and it can be stationary or allowed to move. Typically, the magnetic 
circuit is energized by independent electric circuits (phases). In turn, the electromagnetic 
flux from each phase may, or may not, share the same magnetic circuit. Several works 
related with the SRM can be found in the scientific literature, mainly with respect to the 
rotational configuration. However, while some of them are related with the linear 
configuration, papers describing the usage of switched reluctance technology in the 
production of compound movements are almost non-existent.  
Although the SRM is normally used as an actuator, it can also be used as a generator. The 
phases of a SRM working as motor are energized when the inductance of the phase is 
increasing, which is to say, when the teeth of the rotor are approaching the poles of the 
stator. Phases are powered off at the vicinity of the aligned position. The described 
procedure is inverted when the SRM is operated as a generator. Inductance evolution taking 
as reference rotor position can be observed in Fig. 2, where aligned and unaligned 
characteristic positions are identified. It should be observed that the inductance changes not 
only with rotor position, but also with current. Due to the magnetic saturation effects, at the 
same position, the inductance value decreases when current value increases. 
With the commercial appearance of the SRM, becomes clear the problems related with the 
acoustic produced noise. The study presented in (Krishnan R. et al. (1998)) allowed to 
conclude that the acoustic noise has its sources in the vibrations developed by the radial 
forces acting in the stator. The acoustic noise is amplified when the vibrating frequency 
matches the mechanical resonant frequency. Acoustic noise can also result from inaccurate 
mechanical construction or produced by the action of the actuator electronic drive (Chi-Yao 
Wu et al. (1995)). 
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Aligned PoitionUnaligned Position

Motor Generator
Rotor Position

Inductance

Current Increase

 
Fig. 2. Inductance variation, taking as reference the rotor position. 

A typical geometrical configuration of a SRM can be observed in Fig. 3. This configuration 
receives the 6/4 designation, because it has six poles in the stator and four teeth in the rotor. 
Each phase comprises a pair of coils (A1, A2), (B2, B2) and (C1, C2), so there are three phases 
(A, B, C) in the actuator. Each pair of coils are supported by poles geometrically opposed 
and are electrically connected in order that the magnetic flux created is additive. 
The magnetic force vectors F1 and F2 can be decomposed in two orthogonal components. 
The axial components Fa1 and Fa2 are always equal in magnitude, with opposite directions, 
and cancel each other out all the time. The transversal components Ft1 and Ft2 produce a 
mechanical torque than changes with current and angular position. If the rotor is withdrawn 
from the aligned position, in whatever direction (Fig. 3a)), a resistant torque will be created, 
tending to put the phase at the aligned position again.  
At the aligned position (Fig. 3b)) the produced magnetic force doesn’t have transversal 
components and the resulting torque is zero. At this position, the magnetic reluctance has its 
minimum value; this fulfils the necessary conditions to observe the saturation of the 
magnetic circuit. 
The magnetization curves of a typical SRM are represented in Fig. 4 (Miller, T. J. E, (1993)). 
The magnetization curves for the intermediate positions are placed between the curves 
corresponding to those of the aligned and unaligned positions.  
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Fig. 3. SRM with phase A energized: a) unaligned position, b) aligned position. 
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Fig. 4. Typical SRM magnetization curves. 

At the aligned and unaligned positions the phase can not produce torque and it is 
unavailable to start the movement. When a phase is aligned, the others two will be in good 
position to start the movement in both clockwise and anti-clockwise directions. The 
previously described situation helps to realize that the SRM can only start by itself, in both 
directions, if the minimum number of phases is three. 
To understand how the switched reluctance actuator works we first need to observe the 
energy conversion process. The electrical and the mechanical systems are interconnected 
through the magnetic coupling field. The way how energy flows from the power source to 
the mechanical load is explained next. 
The magnetic reluctance is a measure of the opposition to the magnetic flux crossing a 
magnetic circuit. If one of the magnetic circuit parts is allowed to move, then, system will try 
to reconfigure itself to a geometrical shape corresponding to the minimal magnetic 
reluctance. Fig. 5 illustrates the different stages associated with the energy conversion 
procedure, when a very fast movement from position x to position x + dx occurs. 
Because the movement is fast, it is assumed that the linkage flux does not change. The 
magnetic field energy Wfe at the beginning of the movement is given by the area established 
in Fig. 5a) as  

 { }( ) area , , , .feW a o a c o′ ′ ′=  (1) 
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Fig. 5. Quasi-instantaneous movement from position x to position x + dx. a) initial system 
condition, b) actuator movement, c) power source restoring energy.  
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When actuator fast displaces from position x to position x + dx, represented in Fig. 5b), some 
of the energy stored in the magnetic coupling field is converted into mechanical energy. This 
amount of energy is equivalent to the area given by 

 { }1area , , , .fedW o a P o′ ′=  (2) 

It can be observed that the energy stored at the coupling field decreases. Simultaneously, 
current also decreases. If voltage from the supply source is constant, the current value will 
return to its initial value i0, through the path shown in Fig. 5c), restoring the energy taken 
from the magnetic coupling field during the fast movement. 
Because linkage flux is constant throughout the movement, there is no induced voltage and, 
therefore, the magnetic coupling field does not receive energy from the voltage source. 
An electromagnetic device can convert electrical energy into mechanical energy, or vice-
versa. The energy responsible for actuator motion, taken from the magnetic coupling field, is 
expressed by  

 
constant

.fe
em fe em

dW
dW dW f

dx
λ=

= − ⇒ = −  (3) 

The variation of the energy coupling field is equal, but with opposite signal, to the 
mechanical energy used to move the actuator. The mechanical force fem can be represented 
by  

 
2 2 2

2
1 .
2 22fe em

dL i dLW f
L dx dxL
λ λ

= ⇒ = =  (4) 

Because i2 is always positive, the force applied to the actuator part allowed to move, in the 
direction x, is also positive as long as the inductance L is increasing in the x direction. So, the 
mechanical force acts in the same direction, which also increases the magnetic circuit 
inductance. 
The mechanical force can also be calculated by changing the magnetic circuit reluctance with 
position. If the linkage flux λ is constant, then the flux ϕ in the magnetic circuit is also 
constant and, therefore, the mechanical force is given by  

 
2 2

.
2 2fe em

dW f
dx

ϕ ϕ
= ⇒ = −
R R  (5) 

The mechanical force fem acts in the direction that puts the actuator in a geometric 
configuration that corresponds to the path with lower reluctance. The SRM base their work 
on this basic principle. 
We can also define the co-energy as  

 ( , )fe feW i x i Wλ′ = − , (6) 

depending on current i and position x, 

 
( , ) ( , )
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 (7) 
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As i and x are independent variables, the linkage flux λ, inductance L and the mechanical 
force fem can be obtained from the device co-energy map, applying 
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Thus, as can be seen, if a change in the linkage flux occurs, the system energy will also 
change. This variation can be promoted by means of a variation in excitation, a mechanical 
displacement, or both. The coupling field can be understood as an energy reservoir, which 
receives energy from the input system, in this case the electrical system, and delivers it to 
the output system, in this case the mechanical system. 
The instantaneous torque produced by the actuator is not constant but, instead, it changes 
according to the current pulses supplied. This problem can be avoided, either by making a 
proper inspection of the current that flows through the phases, either by increasing the 
number of phases of the machine. 
The operating principle used by the SRM can also be used to build linear actuators. The 
movement, as in the rotational version, is achieved by the tendency that the system has to 
reduce the reluctance of its magnetic circuit. In the rotational version, the normal attraction 
force between the stator and the rotor is counterbalanced by the normal force of the 
attraction developed by the phase windings which are placed in the diametrically opposite 
positions, thus contributing to the reduction of the electrodynamic efforts. The linear 
topology also experiences this situation and because it develops a very high attraction force, 
designers must have special attention to prevent possible mechanical problems. 
The LSRA can have a longitudinal or a transverse configuration (Corda , J. et al. (1993)). In 
both, the force developed between the primary and the secondary can be vectorially 
decomposed into attraction and traction force, being the latter one responsible for the 
displacement. While in the longitudinal configuration the magnetic flux path has a direction 
parallel to the axis of motion, in the transversal configuration, the magnetic flux has an 
orientation perpendicular to the axis of movement. 
The performance of the two previous configurations can be diminished by the influence of 
the force of attraction between the primary and secondary. As a consequence, the 
mechanical robustness of the actuator must be increased. Simultaneously, as already stated, 
these configurations are more problematic in what concerns the acoustic noise. A symmetric 
version, with a dual primary, avoids the problems caused by the attraction force. The 
attraction force developed through a phase, and applied on one side of the secondary, is 
counterbalanced by the attraction force in the opposite direction, and also applied in the 
secondary. 
A tubular configuration can also introduce significant improvements that minimize some of 
the problems identified in previous paragraphs. The resultant of the radial forces developed 
in the tubular actuator will be null. It is therefore possible to use smaller airgaps, because 
there are no mechanical deformations and thereby maximize the performance of the 
actuator. In general, the use of ferromagnetic material is maximized. In addition, the 
construction of the actuator becomes much simpler. The coils can be self-supported and the 
entire assembly of the structure is greatly simplified. In low-speed applications, eddy 
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currents can be ignored, since the magnetic flux changes occur more slowly and, therefore, 
the construction of the magnetic circuit with ferromagnetic laminated material is not 
mandatory. 

2.2 LSRA characterization through finite element analysis 
Some industrial processes can take advantage from actuators with the ability for doing 
linear displacements with precision. The switched reluctance driving technology is a valid 
solution justified by the qualities previously enumerated. The problem to solve will be the 
development of a new design, not only able to perform linear movements but, 
simultaneously, that allows the accurate control of its position. 
An operational schematic of a LSRA based on the concepts previously introduced can be 
observed in Fig. 6. This actuator is classified as belonging to the longitudinal class, because 
the magnetic flux has the same direction as the movement. 
The force F developed by each phase can be decomposed in the traction force Ft and the 
attraction force Fa. One of the tasks performed during design procedure is the increase of the 
traction force and, at the same time, the reduction of the attraction force. While the traction 
force contributes to the displacement, the attraction force does not produce any useful work 
and has adverse effects in the mechanical structure, as for example, the changing in the 
airgap length. Attraction force effects can be minimized through the change of the 
geometrical configuration of the pole head. 
 

 
Fig. 6. LSRA physical dimensions. 
The physical dimensions of the actuator are listed in Table 1. 
 

Yoke pole width (a) 10 
Coil length (b) 50 
Space between phases (c)  10 
Yoke thickness (d) 10 
Yoke pole depth (e) 30 
Airgap length (f) 0.66 
Stator pole width (g) 10 
Stator slot width (h) 20 
LSRA length (i) 2000 
LSRA stack width  50 

Table 1. LSRA physical dimensions [mm] 
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Finite elements tools allowed to study the complexity of this technology (Ohdachi, Y., 
(1997)), (Brisset, S. et al. (1998)). But there is still missing a standard method to assist the 
design of this class of actuators, although several proposals have been published until now 
(Krishnan, R. et al. (1998)), (Anwar , M. N. et al. (2001)).  
A Finite Elements Model (FEM) of a single-phase LSRA was constructed using FLUX2D. 
FEM construction starts with geometric model definition, where each specific region is 
defined through points and lines. The FEM constructed for the analysis of a single-phase 
actuator can be observed in Fig. 7.  
 

 
a) 

 
b) 

Fig. 7. Finite Elements Model of a single-phase actuator:  a) global view and b) polar region 
detail. 
One of the used finite elements software FLUX2D features is the translation displacement 
possibility, allowing the longitudinal displacement of one, or a group, of regions, without 
the need of redefining the geometry of the model and respective finite element mesh. Two 
regions (in magenta) are defined between the set of regions that must be displaced in the 
longitudinal direction throughout the static simulations. These regions are the actuator 
primary (in blue), the phase coil that carries current in the positive direction (inner region) 
and negative direction (outer region) (both in red), and respective surrounding air (in 
white). Translation function demands also the definition of two narrow airgap regions (in 
yellow), located in both side of the translations regions, and used for the displacement of the 
regions defined between them. 
All regions use triangular elements in the finite elements mesh creation. The exceptions are 
the two displacement regions that use quadrangular elements. Mesh creation must also 
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observe that only a single layer of elements can be established in the translations air-gap 
regions. 
Primary and secondary regions are associated to materials with ST-37 steel magnetic 
characteristics. All other regions inherit the vacuum magnetic characteristics. Inside the coil 
regions, a current source is defined with a positive value for the region that carries the 
current in the positive direction and an identical negative value for the region that carries 
the current in the negative direction. Dirichlet conditions are formulated in the model 
boundary, imposing a null flux across it. 
Several simulations were performed for a set of primary positions and currents. Obtained 
phase traction force Ft and attraction force Fa maps are presented in Fig. 8. 
As can be observed, when actuator poles are aligned (position x = 0 mm) with the secondary 
teeth the traction force is zero. This same situation occurs also at non-aligned positions 
(position x = 15 mm and x = -15 mm). From the analysis of the attraction force map is 
possible to conclude that maximum attraction force is obtained at the aligned position 
(position x = 0 mm).  
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                                         a)                                                                           b) 
Fig. 8. LSRA force maps as a function of position and current: a) traction force and b) 
attraction force. 

2.3 LSRA step-by-step operation control 
The configuration of the LSRA with independent phases allows to increase the robustness of 
the actuator and improves its performance, because more than one phase can operate 
simultaneously, without any kind of disturbance among them. The number of phases of the 
actuator can also be easily changed.  
The sequential energization of the actuator phases is a simple control methodology, which 
can be implemented without requiring large computational resources. Typically, turn-on 
and turn-off positions are established. As demonstrated by the FEM simulations, the traction 
force depends on position and current. For each phase, the attraction force developed at the 
aligned and unaligned positions is always zero. As a consequence, for these positions, the 
phase can’t contribute to displace the actuator. Between these two positions, the traction 
force direction depends of the relative positions between phase poles and the nearest stator 
teeth. 
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Fig. 9. LSRA step-by-step motion: a) three phases configuration; b) four phases configuration. 
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Fig. 10. LSRA step-by-step motion: a) three phases configuration; b) four phases configuration. 
Considering phase A at the aligned position as the displacement reference (x = 0 mm), the 
motion can be started in both directions, depending on the energization of the others two 
phases. If phase B is energized, the actuator will be moved to the right. The movement to the 
left can be achieved through the energization of phase C.  
Operation of the actuator in three phase configuration is represented in Fig. 9a). With this 
configuration the actuator can perform displacements with 10 mm of resolution. In Fig. 10a) 
is illustrated a schematic representation of the total traction force developed by all the three 
phases, considering that they are energized with a constant value of current. It can be 
observed that the traction force isn’t constant and changes with position. In the example, the 
actuator performs a displacement of 30 mm to the right. During this movement all phases 
are energized in B-C-A order.  
Actuator performance can be improved if the number of phases is increased. A 30 mm 
displacement is represented in Fig 9b), for an actuator with four phases energized in  
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B-C-D-A order. It can be observed that the resolution of the displacement was increased to 
7.5 mm. At the same time, the total traction force ripple was also decreased, see Fig. 10b). 
The major drawback observed is that the size and the height of the actuator increase. 

3. Sliding mode position controller  
The sliding mode technique was used by others to control the behaviour of SRM. Through 
it, problems as the acoustic noise, binary flicker, or velocity control were solved with success 
or, at least, machine performance was improved.  
A direct torque control algorithm for a SRM using sliding mode control is reported in 
(Sahoo, S.K. et al. (2005)). A control strategy for an energy recovery chopper in a capacitor-
dump is proposed in (Bolognani, S. et al. (1991)). A flux-linkage controller, using the sliding 
mode technique, with integral compensation, is proposed in (Wanfeng Shang et al. (2009)) 
for torque ripple minimization. A sliding mode controller is used in (Pan, J. et al. (2005)) to 
control the position of a two-dimensional (2D) switched reluctance planar motor. 
An approximate sliding mode input power controller and another feedforward sliding 
mode speed controller are combined with space voltage vector modulation in (Tzu-Shien et 
al. (1997)) to implement a robust speed control. Another robust speed controlled drive 
system using sliding mode control strategy is presented in (John, G. et al. (1993)).  
A sliding-mode observer is proposed in (Zhan, Y.J. et al. (1999)) for indirect position sensing. 
A sliding mode binary observer is also used in (Yang, I.-W. et al. (2000)) to estimate the rotor 
speed and position. Current and voltage are used by a sliding mode observer described in 
(Islam, M.S. et al. (2000)) to estimate the position and the speed to minimize the torque-
ripple. The conduction angles are controlled in (McCann, R.A. et al. (2001)) by a sliding 
mode observer that estimates the rotor position and the velocity. 
A sliding mode controller is used in (Xulong Zhang et al. (2010)) in order to reduce cost, 
simplify the system structure and increase the reliability of a switched reluctance generator.  
The LSRA electromagnetic model to n = {1,2,3} phases is described by (9), where Rn is the 
phase coil resistance, vn the supplied voltage and in the phase current. Mathematical 
expression (10) describes actuator mechanical behaviour, where a is the device acceleration 
and M the mass. Actuator non-linearity is taken into account because both inductance L(i,x) 
and traction force F(i,x) change not only with position x, but also with current i. 
 

 ( , ) ( ) ( , ) ( , )0 ( ) ( , ) ( ) ( )n n n n n
n n n n n n n n

dL i x i t di L i x L i xdxR i t v L i x i t R i t v
dt dt i dt x

δ δ
δ δ

⎡ ⎤ ⎡ ⎤= + − = + + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (9) 

 ( , )F x ta
M

=  (10) 
 

The state space is defined as: 

 

n n n nn
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dx y
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where αn and βn stands for: 

 

( , )( , )
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L i xi
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δα
δ

δ
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δ

⎧ = +⎪⎪
⎨
⎪ =
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 (12) 

The control strategy previously presented allows to reach discrete positions. Intermediate 
positions aren’t reachable. The concept of variable structure is introduce next, and applied to 
the LSRA to improve the displacement capacities the actuator. The Variable Structure 
System (VSS) as defined below 

 ( , ) ( , )X A X t B X t u= + , (13) 

belongs to a particular case of automatic control systems. Intentional commutation is 
introduced between two different control actions, in one or more channels of control inputs. 
The possible type of motion of a VSS in the state space is manifested by the appearance of 
the sliding mode regime. This kind of control was successively applied to the rotational 
switching reluctance motors as described previously. To achieve sliding motion regime, a 
switching surface is defined by s(X,t) = 0, the control structure u(X,t) stated in (14) changes 
from one structure to another. When s(X,t) > 0 the variable structure control is changed in 
order to decrease s(X,t). The same kind of action is taken when s(X,t) < 0. The control main 
goal is to keep the system state space sliding in the surface s(X,t) = 0. During this sliding 
motion, the system behaves like a reduced-order system, being insensitive to disturbances 
and parameters changes. The control structure can be expressed by: 

 
( , ) ( ) 0

( , )
( , ) ( ) 0

u X t s X
u X t

u X t s X

+

−

⎧ ⇐ >⎪= ⎨
⇐ <⎪⎩

. (14) 

The previously explained concept is used to develop the LSRA position controller. At a 
specific moment, it is assumed that traction force can be developed in both directions with 
proper choice of actuator phase. After turning off, an actuator phase still has the ability to 
produce traction force. This situation occurs because current phase do not goes down 
instantaneously, but diminishes by the free wheel diodes path, with a time constant that 
depends on phase inductance and resistance. This behaviour is responsible for the 
introduction of a delay in controller response, contributing to increase the oscillations 
(chattering) around the sliding surface. 
The movement of the actuator can be expressed as a VSS with two possible control actions. 
Considering that the primary of the actuator has the M mass. A control action produces a 
traction force in the left direction Fl, while the other control action produces a traction force 
in the right direction Fr. Under this control action the actuator will have the horizontal 
displacement x, at velocity y, given by 

 
x y

uy
M

=⎧
⎪
⎨

=⎪⎩

. (15) 
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The control law u(t) is established as 

 
( , ) 0

( )
( , ) 0

r

l

F s e e
u t

F s e e
⇐ >⎧

= ⎨ ⇐ <⎩
, (16) 

The VSS model has the following formulation 

 
(1 ) l

x y
F Fy k k
M M
γ

=⎧
⎪
⎨

= + −⎪⎩

, (17) 

with { }0,1k∈ . 
The system will be defined by 

 ( ) ( )x f x g x k= + , (18) 

with  

 ( )
0

( ) ( )
l r l

y
f x and g xF F F

M M

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

. (19) 

The commutation function ( , )s e e  depends on the position error e and the derivative of the 
position error e , and is defined by  

 ( , )s e e me e= + , (20) 

where m is a positive constant, experimentally obtained. 
The controller selects from the lookup Table 2 which phase will provide the desired control 
action, in order to maintain ( , ) 0s e e = . The position reference (x = 0) is taken as the aligned 
position for phase A. 
 

Traction Force [0,10[ [10,20[ [20,30[ 
Left direction (Fl) Phase A Phase B Phase C 
Right direction (Fr) Phase B Phase C Phase A 

Table 2. Relative actuator position [mm] 

4. Regulation and command electronic driver 
For the actuator could be able to perform the predefined task with the required 
performance, a power converter must be designed for driving it and to apply the proposed 
control strategy. The half-bridge configuration has the required versatility to permit the 
usually adopted operation modes in applications with SRM: single-pulse, soft-chopping and 
hard-chopping. An example of a functional structure of the controller for one phase can be 
seen in Fig. 11. 
The developed power converter has three main blocks (Fig. 12), which are (1) the Distribution 
Unit, responsible to make the interface with the microprocessor using proper electronics and 
to manage the operation of the other two blocks, (2) the Regulation Units receive orders 
concerning the states that must be imposed to the power switches; making use of the reference 
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signal available from the microprocessor, have the ability to control the shape of the current 
that flows in each coil of the actuator phases, (3) the Power Units, which, receiving orders from 
the state of the power switches, can properly feed the phase coils.  
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Fig. 11. Power converter general topology for one phase. 
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Fig. 12. Global visualization of the actuator driver. 
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All the information is centralized in the Distribution Unit, which shares that information 
with the processor, and for each phase is possible to know the required PWM (Pulse-Width 
Modulation) signal used to generate the controller current reference, the state of the switch 
T1, the state of the switch T2, and the signal corresponding to the current in the coil of the 
actuator phase. Beyond these knowledge, the Distribution Unit receives from the encoder 
two lines with pulse sequences (Encoder A and Encoder B), which are sent to the 
microprocessor, allowing the determination of both the position and the direction of the 
displacement. 
The analog signal, reference of the current controller, is generated by a DAC (Digital-to-
Analog Converter), by using a PWM. The signal, after being filtered by a low-pass filter is 
returned as a signal depending on the band width of the PWM. The DAC resolution is 
stated by the length of the counter used to generate the PWM signal.  
The resolution Rbit, in number of bits, can be calculated as 

 
( )

max

max
2 2

ln
( ) ,

ln 2bit

N
N CR Log R Log

C

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠= = =⎜ ⎟

⎝ ⎠
 (21) 

with max /R N C= , Nmax the maximum number of counts and C the minimum change of 
duty-cycle. As an example, with a maximum count of 512 and 2 the minimum change of the 
duty-cycle, the obtained resolution is of 256 different levels for the analog output. The 
corresponding resolution in bits is 

 ( )bitR 2log 256 8bits= =  (22) 

The required frequency of the PWM is established by the rate of change stated by the DAC, 
as each change in the duty-cycle corresponds to a sample of the DAC. The frequency of the 
counter fc depends on the frequency fPWM, stated for the PWM signal, and on its resolution 
Rbit . So, it can be written that 

 2 bitR
c PWMf f=  (23) 

Thus, in order to obtain an 8 bits equivalent DAC, able to generate signals with 8 kHz 
frequency samples, the PWM signal must have a similar frequency. Using the equation (23), 
the counter must receive a clock input with a frequency of 2.048 MHz. The cut-off frequency 
of the low-pass filter must be defined quite below the frequency of the PWM signal, so that 
the noise generated by the signal commutation can be canceled. Nevertheless, it can’t be so 
small that restricts the rate of change of the DAC output by imposing a high time constant. 
The acquisition of the current flowing in the phase coil is achieved by using a Hall effect 
sensor with dynamic characteristic that enables it to follow the variations in the signal to be 
acquired.  
The comparator is used to compare the voltages applied to its two input ports and return a 
value depending on the sign of the difference between those values (Franco, S. (2001)), 
(Williams, J.  (1990)). This device can be faced as an analog to digital converter of one single 
bit.  
When the amplifier feedback signal is positive, it can be said that it is in regenerative 
operation mode. In this situation, the circuit acts in order to amplify the effect of any 
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disturbance. The amplifier output can then adopt one of two states: high or low levels. The 
obtained hysteresis characteristic can be used in implementing the on-off type control. 
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Fig. 13. Scheme of hysteresis control circuit in inverting assembly 

In the electrical scheme of Fig 13, the signal Vin is applied to the inverting input and the 
resistance R2 is much higher than the resistance R1. In the special case of having infinite 
resistance R2 there will be no hysteresis, and the circuit switch on with the reference of 
voltage Vref.  
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 (24) 

All the electronic chain used to control the current flowing in the phase coil is represented in 
Fig. 14, being the way how it is integrated in the power converter operation described as 
follows.  
 

Error Detector Hysteretic Controller And Gate

 
Fig. 14. Circuit used to control the current flowing in the actuator phase coil. 
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Once the current I flowing in the actuator phase coil is acquired and conditioned, the value 
of the reference current I_ref is subtracted; the resulting value from that operation, I_error, is 
sent to the histeresis controller, with the histeresis range set by the potentiometer R8. The 
resistance R2 is used to make the pull-up of the control output signal. The output signal is 
available to the following electronic structure, which operates as an AND logical gate. If the 
current flowing through the base-emitter diode is enough high to saturate it, the collector 
voltage can be less than 1 volt, which is considered as a logic TTL zero. The result from that 
logical operation is the basis to establish the control of the power switches of the half-bridge 
power converter T2. Thus, the switch is only activated if there are simultaneous orders from 
the microprocessor and from the histeresis controller. 
With the current controller it can be established a current profile. In Fig. 15 is possible to 
observe how voltage at the phase coil is switched for different current profiles.  
 

 
                                          a)                                                                              b) 

 
c) 

Fig. 15. Actuator hardware current controller operation: voltage (ch. 1) e current (ch. 2): a) 
current decreases linearly, b) two different current stages, c) increasing and decreasing the 
current linearly. 
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5. Development of the controller firmware  
To verify the applicability of the here proposed control methodology, an experimental setup 
was constructed based on the TMS320F2812 eZdsp Start Kit. Event Manager EVA is used to 
generate the PWM signals from where the Current Reference signals are obtained. Each 
current phase signal is acquired by the on-chip ADC and saved in a buffer memory. At this 
moment current phase information is not used by the controller.  
Actuator position is feedback to the TMS320F2812 QEP Unit by the incremental encoder. 
From the Quadrature Encoder Pulse (QEP) unit data, actuator velocity and position are 
derived. The sliding mode controller establishes the switching strategy, used to turn-on and 
turn-off the LSRA phases. Using Microcontroller GPIO, each phase signal lines T1 and T2 are 
properly switched. Data lines shared between the eZdsp and the LSRA regulation 
electronics are represented in Fig. 16a). 
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Fig. 16. a) eZdsp interface with LSRA electronic regulation and b) TMS320F2812 code flow. 
Developed code to the TMS320F2812 implements the control methodology previously 
described. The most important software blocks are represented at Fig. 16b). Software begins 
with the configuration of each peripheral and before enter in a wait state activates the CPU 
Timer 0 interrupt. This interrupt possess an ISR that based in QEP information determines 
the actuator position and, based on it, the corresponding position error and derivative 
position error. For each CPU Timer 0 interrupt a service routine is executed. The 
information needed to realize the control procedure is obtained. Based on it, the control 
action is derived and applied to the proper phase, as specified in the lookup table. Status 
system information (position and phase current) is saved in memory. After the operation 
action, the functionalities of Code Composer Studio are used to collect the results from the 
microprocessor memory and saved it on file for posterior analysis. 
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6. Results and discussion 
The results returned by the application of the sliding mode control methodology to the 
LSRA are presented next. The primary of the actuator always start from the initial position 
(x = 0) with the poles of the phase A aligned with the stator teeth. The information on the 
displacement that the primary of the actuator must perform is provided to the sliding mode 
controller. Position evolution of primary of the actuator is presented in Fig. 17 for different 
required final positions. 
For one of the previous displacements (25 mm) the phase portrait is presented in Fig. 18. 
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Fig. 17. Actuator position for small displacements: a) 25 [mm], d) 26 [mm], c) 28 [mm], d) 29 
[mm]. 
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Fig. 18. Phase portrait for a 25 [mm] displacement. 

7. Conclusion  
The finite elements analysis allowed to understand the working principle of a three phase 
Linear Switched Reluctance Actuator developed for robotics applications. Using this tool, 
traction and attraction map were obtained. This information allows to characterize the 
actuator behaviour. Based on the obtained results a prototype was constructed with 
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correspondent power and regulation electronics. The establishment of proper position 
control for a high performance device was achieved through a proposed strategy based on 
sliding mode control. That task was performed by implementing the developed 
methodology on a TMS320F2812 eZdsp Start Kit, taking advantage from their built-in 
peripherals. Experimental results allowed to conclude that actuator can realize 
displacements with 1 [mm] resolution. 
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1. Introduction 
This chapter deals with the position control of a mini voice coil motor (VCM) mounted on a 
compact camera module (CCM) of a mobile phone. Mini VCMs are increasingly popular 
nowadays in 3C electronic gadgets such as mobile phones, digital cameras, web cams, etc. 
(Yu et al., 2005). The common requirements of these gadgets are miniaturization and high 
performance. Miniaturized VCM faces the challenge of accuracy position control. Sliding 
mode control will be adopted to compensate for the nonlinear friction in the actuator of the 
VCM. Experimental results in this chapter will show that good position control performance 
is achieved by sliding mode control. 
Fig. 1 shows such a typical VCM with the size of 8.5×8.5×4.6 mm3 and the stroke of 0.35mm. 
In Fig. 1(b), the congeries of the magnet (a), the yoke (d), and the lens holder (e) forms the 
actuator, while the guide pins (b), the coils (c), and the CMOS sensor cover (f) are stationary 
parts. The current through the coils generates force to move the actuator along the guide 
pins, which induces nonlinear friction. It is known that friction is the cause of stick slip 
oscillations during the motion when a usual PI controller is applied to the VCM. 
The work (Bona & Indri, 2005) presents a comprehensive survey of different kinds of friction 
compensation schemes, and indicates that types A and B solutions are suitable for cost-
sensitive applications because of its limited calculation burden. Several other methods in the 
literature are a nonlinear proportional controller with bang-bang force in specified region to 
compensate for the stick slip friction (Southward et al., 1991) , a look-up table position 
controller with higher gain for smaller position error and lower gain for larger position error 
to eliminate stick slip oscillations (Hsu et al., 2007), and an anti-windup PI controller, 
incorporated with the disturbance observer, to control a VCM (Lin et al., 2008). 
To overcome the load variation due to tilt attitude of the CCM and the nonlinear friction 
force of the VCM, a dedicated sliding mode controller will be designed for the position 
control. High accuracy repeatability under 10 μm, fast settling time, and free of stick slip 
oscillations are the control goals. The challenge of the sliding mode controller design for the 
VCM is to select the control gains such that the error state variable in the sliding surface  
s = 0 will approach zero as time approaches infinite. The final value approach is used to 
make sure that the error state variable is bounded and can be made as small as possible by 
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increasing control gains. In practical implementation, if the allowable steady-state error is 
given, the control gains can be easily calculated out. 
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Fig. 1. Mini voice-coil motor with 8.5×8.5×4.6 mm3: (a) photo; (b) illustration of the 
components 

2. Mathematical model of the VCM 
Let the position of the actuator be d, and the current of the coils be i. The mathematical 
model of the VCM in Fig. 1 can be described by the dynamical and the electrical equations 
as follows: 

 C Dmd Bd K i f+ = −  (1) 
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 bLi Ri u K d+ = −  (2) 

where m and fD are, respectively, the mass and the friction of the actuator, B is the viscous 
coefficient, L and R are, respectively, the inductance and the resistance of the coils, KC is the 
magnetic force constant, Kb is the back-emf constant, and u is the input voltage.  
Assume that the desired position is d*. To transform Eqs. (1) and (2) into the form of state 
equations, we introduce the state variables of  

 *
1 2 3,   ,   x d d x d x i= − = =  (3) 

and the parameters of  

 1 2 3 4 5 6
1 1, , , , ,  C bK KB R

m m m L L L
α α α α α α−− − −

= = = = = =  (4) 

The VCM model of Eqs. (1) and (2) can then be rewritten in the form of  

 
1 2

2 1 2 2 3 3

3 4 2 5 3 6

D

x x
x x x F
x x x u

α α α
α α α

=⎧
⎪ = + +⎨
⎪ = + +⎩

 (5) 

In the VCM system, x1 is the output as well. The system turns out to be an output regulation 
problem with a mismatched condition, since FD and u are in the different equations. The 
usual compensation and cancellation method cannot be used to eliminate FD. 
It is known (Canudas de Wit et al., 1995) that the friction FD consists of the stiffness and the 
damping parts in the form of 

 0 1DF z zσ σ= +  (6) 

where σ0 and σ1 are the stiffness and the damping coefficients of Stribeck effect, and z is 
average deflection of the bristles. Let FC be the coulomb friction force, FS be the static friction 
force and vS be the Stribeck velocity. Define the function g(x2) as 

 ( ) ( )
2

2
2

0

1 S

x
v

C S Cg x F F F e
σ

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟= + −
⎜ ⎟
⎝ ⎠

 (7) 

Thus, the dynamic equation of z is  

 
( )

2
2

2

x
z x z

g x
= −  (8) 

3. Sliding mode control law 
The key technique of sliding mode control is to find a sliding surface in which any value of 
the state x1 will move toward zero, i.e., zero position error. And then a control law is 
designed to drive any state variables outside the sliding surface to drop on the surface and 
to adhere to the surface. In such a way, the sliding mode position controller regulates the 
position of the actuator d to the desired one d*. 
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It will be shown later that any x1 in the sliding surface S = 0 will eventually approach zero, 
where 

 2 1 1 2 3S x x xβ β= − −  (9) 

with proper constants β1 and β2. The surface S = 0 is then the desired sliding surface of the 
VCM model (5). 
The next mission is to design a switching input u in Eq. (5) that drives the state variables of 
the system to the sliding surface S = 0. We define V(s) = S2/2, which is greater than 0 for S ≠ 
0. According to Lyapunov’s stability theorem, if we can find a controller u(x1, x2, x3) such 
that (0) 0V = and ( ) 0, 0V s SS S= < ∀ ≠ , then S = 0 is an asymptotically stable equilibrium.  
Taking derivative of Eq. (9) and substituting Eq. (5) into it, we obtain 

 ( ) ( )1 4 2 1 2 2 5 2 3 6 2 3 DS x x u Fα α β β α α β α β α= − − + − − +  (10) 

The first two terms on the right-hand side of Eq. (10) can be easily eliminated by directly 
inserting them in u(x1, x2, x3), since x2 and x3 are available states and can be used as feedback 
signals. However, the value of FD is not available, so that to eliminate it needs a sufficiently 
large constant value. This motivates us to select 

 ( ) ( )1 4 2 1 2 2 5 2 3 1 2
6 2

1  sgn( )u x x c S c Sα α β β α α β
α β

+ +⎡ ⎤= − − + − + +⎣ ⎦  (11) 

where sgn(S) is the sign of S, and 1c+  and 2c+  are nonnegative constants. Substituting Eq. 
(11) into Eq. (10) yields 

 2 1 3sgn( ) DS c S c S Fα+ += − − +  (12) 

It is apparent that 1c+  sgn(S) can be used to cancel the divergent part of α3FD, while 2c+  
provides a freedom to adjust the convergent speed. Finally,  

 ( )
( )

2
2 1 3

1 3 1 3

max
1 3

sgn( )

     

      

D

D D

D

V SS c S c S S F S

c S F S c F S

c F S

α

α α

α

+ +

+ +

+

= = − − +

≤ − + = − −

≤ − −

 (13) 

where max
DF is the static friction and max

D DF F≥ . Choose 

 max
1 3 Dc Fα+ >  (14) 

to obtain 0V <  for S ≠ 0. Consequently, u(x1, x2, x3) in Eq. (11) with 1c+  satisfying Eq. (14) is 
a controller for the asymptotically stability of S= 0. The approaching speed can be assigned 
by 2c+ >0. Moreover, we have the following theorem. 
Theorem 1. Consider the VCM model of Eq. (5). Suppose that the upper bound of 

max
D DF F≥  is known. The controller u(x1, x2, x3) in Eq. (11) with S defined in Eq. (9), 

max
1 3 Dc Fα+ > , and 2c+ ≥ 0 makes the steady state value x1(∞) of the system converge to a 

bounded region of 
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 ( )
max

3
1 2

DF
x

α
λ

∞ ≤  (15) 

where λ > 0 is a constant, if β1 and β2 in (9) are  

 
2

2
1 2

1 1
,   

2 2
λ αβ β

λ α λ α
− −

= =
+ +

 (16) 

Proof. We just need to prove that any states in the sliding surface S=0 will eventually 
converge to the region of Eq. (15). 
It follows from Eq. (9) that in the sliding surface S = 0, 

 2 1
3 1

2 2

xx xβ
β β

= −  (17) 

Substituting Eq. (17) into the VCM model of Eq. (5), we reduce the state equation to a 
second-order differential equation: 

 2 2 1
1 1 1 1 3

2 2
Dx x x Fα α βα α

β β
⎛ ⎞

− + + =⎜ ⎟
⎝ ⎠

 (18) 

We take Laplace transform of above equation to obtain 

 ( )
( ) ( ) ( ) ( )2

1 1 1 1
2

1
2 2 2 1

1
2 2

0 0 0 Dsx x x L cF t
X s

s s

αα
β

α α βα
β β

⎛ ⎞
+ − + + ⎡ ⎤⎜ ⎟ ⎣ ⎦

⎝ ⎠=
⎛ ⎞

− + +⎜ ⎟
⎝ ⎠

 (19) 

Substituting Eq. (16) into the characteristic equation of (19) yields 

 2 22 0s sλ λ+ + =  (20) 

which has double roots of -λ < 0. The time-domain solution to Eq. (19) is then (Golnaraghi & 
Kuo, 2009) 

 ( ) ( )1 1 2 30
t t

Dx t k e k te F t e dλ λ λτα τ τ τ
∞− − −= + + −∫  (21) 

where k1 and k2 are some constants. The final value of of x1 as t→∞ is then 

 

( ) ( )1 30

max max
3 3 20

0
max

3
2

          

          

lim D
t

D D

D

x F t e d

e eF e d F

F

λτ

λτ λτ
λτ

α τ τ τ

τα τ τ α
λ λ

α
λ

∞ −

→∞
∞− −∞ −

∞ = −

⎛ ⎞
≤ = − −⎜ ⎟⎜ ⎟

⎝ ⎠

=

∫

∫  (22) 

This completes the proof.                                                           
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Theoretically, the bounded region Eq. (15) of the steady state value x1(∞) can be made as 
small as possible by increasing λ. In a practical problem, the bound of max

DF  and the value of 
α3 are known a priori, so λ can be calculated out from Eq. (15) for a given bound of x1(∞). 
However, the larger λ is, the larger is the absolute value of β1, and then the larger is those of 
S in Eq. (9) and the controller u in Eq. (11). To limit the controller u, a control gain switching 
strategy is implemented. A threshold value xth > 0 is defined first. As the sliding mode 
control starts up, a low-value λ is used until |x1|< xth. Thereafter a high-value λ is used to 
reduce the convergent bounded region. It can be expected that |x2| is small after |x1|< xth, 
since x2 is the time derivative of x1. This imples that the absolute values of β1x1 and β1x2 are 
small after |x1|< xth., and so are S and u. The overall sliding mode control law incorporated 
with the control gain switcihing strategy is illustrated in Fig. 2. There are two controllers in 
Fig. 2. One with low gains is outputted to the VCM for |x1|≥ xth, while the output to the 
VCM for |x1|< xth is the other with high gains.  
 

Controller
with

low gains

Controller
with

high gains

d

d* +

−

Velocity
estimator

VCM
|x1| ≥ xth

|x1| < xth

x1

x2

x3

 

Fig. 2. Block diagram of the overall control law. 

It should be remarked that the undesired chattering of the sliding mode control can be 
alleviated by replacing sgn(s) in Eq. (11) with the following saturation function of 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−<−

≤

>

=

kS

kS
k
S

k

S

for  , 1

for   , 

Sfor     , 1

)(sat
 

(23)
 

where k > 0 represents the thickness of the boundary layer. 

4. Simulations 

Consider a real VCM which will be used in the experiments. The parameters of the VCM are 
α1 = -24, α2 = 800, α3 = -1000, α4 =-2666.7, α5 = 66666.7, α6 = 3333.3, max

DF =0.011. Assume that 
the design goal is to make the steady state error smaller than 0.4 μm, which in turn asks  
λ = 5244.044 by Eq. (15). Substituting the value of λ into Eq. (16), we obtain β1 = -2628.036 
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and β2 = -0.076. Of course, these are high control gains. The low control gains are assigned as 
λ = 1172.6, β1 = -592.36, and β2 = -0.3446, while xth = 1.5 μm is chosen. We let 2c+ = 0 to 
observe the effectiveness of 1c+ . First, choose 1c+ = 70 > |α3|

max
DF = 11.  

In the computer simulation, the VCM is modelled by Eq. (5) with the friction model of Eqs. 
(6)-(8). The Simulation result for the proposed controller in Theorem 1 is shown in Fig. 3. 
There is a steady state error x1(∞) = d(∞) – d* of 0.0973 μm, which is less than the design goal 
of 0.4μm. This shows that the controller proposed in Theorem 1 can have the response 
satisfying an assigned steady state error by choosing λ from Eq. (15). On the other hand, the 
value of 1c+  has the ability to drive the system states to the sliding surface S = 0, which can 
also be seen from Fig. 3, too. Actually, S(t) = 0 for t > 0.009 s. It is remarkable that the usual 
stick slip phenomena of the friction does not appear in the response of the proposed sliding 
mode controller. 
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Fig. 3. Simulation response of the proposed sliding mode controller. 
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Fig. 4. Block diagram of a classic PI control law. 
To show that stick slip phenomena of the friction appear in a usual controller, a classic PI 
control law is also simulated. The block diagram of the PI controller is shown in Fig. 4. There 
are two PI control loops. The inner one is the current control loop: 
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 ( )IC
PC 3( ) * ( ) ( )KU s K I s X s

s
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (24) 

where I*(s) is the Laplace transform of i*(t), which is the output of the position control loop: 

 IP
PV PP 1 2* ( ) ( ) ( )KI s K K X s X s

s
⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (25) 

 

Fig. 5(a) shows the simulation result of the classic PI controller for 0 s ≤ t ≤ 1.5 s, while its 
transient part before t < 0.02 s is shown in Fig. 5(b). It is apparent from Fig. 5(a) that there 
are stick slip oscillations in the steady-state of the classic PI controller. For the purpose of 
comparison, Fig. 5(c) and 5(d) show the counterparts of the simulation result of the sliding 
mode controller. It can be seen from Fig. 5(c) that the proposed sliding mode controller does 
not induce any stick slip oscillations. Besides the ability to compensate for the nonlinear 
friction force of the VCM, the proposed controller also has faster transient response, which 
can be obtained by comparing Fig. 5(d) with 5(b). 
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Fig. 5. Classic PI controller: (a) steady response with stick slip and (b) transient response; 
sliding mode controller: (c) steady response without stick slip and (d) transient response. 
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Furthermore, a simulation is performed to observe how 2c+ in Eq. (12) affects the 
approaching speed to the sliding surface S = 0. We increase the value of 2c+  from 0 to 200 
and 800, while retain all other control gains. The simulation responses of S for these three 
values of 2c+  are shown in Fig. 6. As was expected from Eq. (12), the settling time for S 
decreases with the increase of 2c+ . The response for 2c+ = 800 is almost the same as that of a 
first order homogenous differential equation, since the other terms on the right side of Eq. 
(12) are much smaller than 2c+ S in absolute value. Actually, the value of 1c+  has similar 
effect on the approaching speed to the sliding surface. 
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Fig. 6. Simulation responses of the sliding mode controller with various 2c+ . 

We fix 2c+  = 0 and change 1c+ from 70 to 140 and 280. The simulation responses in Fig. 7 
reveal that the settling time for S also decreases with the increase of 1c+ . However, the 
responses in Fig. 7 are not so smooth as those in Fig. 6. This indicates that 2c+  is still a useful 
parameter to adjust the convergent speed. 
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Fig. 7. Simulation responses of the sliding mode controller with various 1c+ . 
Finally, we are interested in the chattering phenomenon of sliding mode control. The 
chattering parasitizes in the response of the sliding function S after the states reach the 
sliding surface S = 0. The states driven by the controller of Eq. (11) will go out of and back to 
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the sliding surface, since the term associated with sgn(S) changes the control effort with the 
direction of S. The simulation response in Fig. 8 demonstrates the existence of the chattering 
phenomenon in S and u for the controller with sgn(S). If we replace sgn(S) in Eq. (12) with 
sat(S) in Eq. (23), the chattering can be alleviated as shown by the response for the controller 
with sat(S) in Fig. 8. 
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Fig. 8. Simulation responses of the sliding mode controller with sgn(S) and sat(S). 

5. Experiments 
The experimental setup is shown in Fig 9. The experimental system consists of a PC 
motherboard with X86 CPU and a FPGA board. There is a parallel ATA cable as a data 
communication interface. The FPGA board takes charge of generating the driving voltage of 
the VCM and measuring the coil current i and the actuator position d of the VCM. The PWM 
(Pulse Width Modulation) algorithm in the FPGA will generate the PWM signals to drive 
the full bridge (Chen et al., 2003) and then output the command voltage to the VCM. The 
full bridge plays the role of a power converter. Two ADC (analog-to-digital converter) 
circuits are used to sense the coil current and the actuator position, respectively. The sensed 
signals are filtered by the IIR filter algorithm in the FPGA. The PC motherboard reads the 
filtered current and position signals through the parallel ATA interface. The controller 
algorithm is programmed and executed in the PC motherboard. The current and position 
signals are the feedback signals of the controller, and are used to calculate out the controller 
output u. The output voltage u is then sent back, via the ATA interface, to the PWM 
modular of the FPGA, which transfers the voltage command to PWM signals and drives the 
VCM through the full bridge.  
The tuning method introduced in (Ellis, 2004) is used to tune the control gains of the classic 
PI controller Eqs. (24)-(25). Fig. 10(a) and 10(b) shows the experimental result of the PI 
controller. It can be seen from Fig. 10(a) that there are stick slip oscillations after 0.15 s. The 
transient response in Fig. 10(b) is similar to the one of the simulation result in Fig. 5(b).  
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Fig. 9. Experiment system of the VCM Controller. 
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Fig. 10. Classic PI controller: (a) steady response with stick slip and (b) transient response; 
sliding mode controller: (c) steady response without stick slip and (d) transient response. 
For the same desired position command, the experimental result of the proposed sliding 
mode controller has no stick slip oscillations as shown in Fig. 10(c). However, the sliding 
mode controller induces small overshoot in the transient response (see Fig. 10(d)), although 
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it has a faster response. Such a fast response is able to support the advanced AF (auto focus) 
algorithm capable of 60 frame-rate. It should be remarked that the response in Fig. 10(c) is 
noisier than that in Fig. 10(a). This is caused by the chattering of sliding mode control with 
sgn(S). 
The difference between the responses of the sliding mode controller with sgn(S) and with 
sat(S) can be obtained by the experimental results shown in Fig. 11. In this experiment, the 
VCM is first hold in the position of d = 0.07 mm, and then is driven to the position of  
d = 0.22 mm. The chattering phenomenon dominates in the measured feedback coil current i 
in Fig. 11(b) for the controller with sgn(S). Fig. 11(d) shows that the controller with sat(S) 
diminishes the chattering amplitude in the coil current i. On the other hand, comparing Fig. 
11(c) with Fig. 11(a) reveals that the transient response from d = 0.07 mm to d = 0.22 mm for 
the controller with sat(S) is smoother than that with sgn(S). 
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Fig. 11. Chattering phenomena: (a) and (b) responses of the controller with sgn(S); (c) and 
(d) responses of the controller with sat(S). 
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6. Repeatability tests 
Repeatability is a critical specification for the VCM. In a camera, an AF (Auto Focus) 
algorithm detects the sharpness of images in multiple positions over the full optical stroke, 
and then asks the actuator to the position with the sharpest image. Poor repeatability would 
degrade the AF performance because the actuator would go to a wrong position different 
from the one with sharpest image. Thus, repeatability tests are inevitable for the VCM to be 
mounted in a compact camera module.  
 

 
 

Fig. 12. LDM records for the vertical movements. 
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We utilize a laser displacement meter (LDM) to measure the physical position of the 
actuator in repeatability experiments. The controller used in the repeatability tests is only 
the proposed sliding mode law with sat(S). The movement of the actuator is tested both in 
the vertical and horizontal directions. The LDM records for the vertical movements are 
shown Fig. 12, while those for horizontal ones are in Fig. 13. 
 

 

Fig. 13. LDM records for the horizontal movements. 

In each record, the actuator leaves its original position and then comes back. Cursor 1 of the 
LDM picks the position value at an arbitrary time before leaving, while Cursor 2 picks 
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another one after coming back. The difference of these two values is the repeatability. The 
records both in Fig. 12 and in Fig. 13 have the repeatability less than or equal to 1 μm. 
Comparing Fig. 13 with Fig. 12, we also find that the repeatability in horizontal direction is 
slightly poorer. The cause is that unbalanced friction force is more largely applied on the 
two guide pins in this horizontal orientation. However, the nominal requirement of the 
repeatability for a mini camera is about 10 μm. It is of no doubt that the proposed sliding 
mode controller with sat(S) is suitable to drive the VCM for the AF system of a camera. 

7. Conclusions 
In this chapter, a sliding mode controller is proposed to compensate for the nonlinear 
friction force of the mini VCM mounted on a compact camera module. It is known that the 
stick slip friction phenomenon would result in significant image-shaking and is not allowed 
in the camera application. In the proposed control system, stick slip oscillations disappear 
and the steady state error can be designed in arbitrarily small by the pole placement in the 
dynamical equation of the sliding surface. The experimental results show that the transient 
response is less than 10 ms, no stick slip oscillations occur in the steady state response, and 
the repeatability performance is also excellent. Consequently, the proposed control scheme 
works well and is reliable. 
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1. Introduction

At present, vision sensors represent a very good option for the control of robots since
they provide at a low cost a lot of information from the environment. The feasibility of
using a vision system as the only source of feedback information has been shown by many
approaches (Chaumette & Hutchinson (2006), Chaumette & Hutchinson (2007)). Particularly,
incorporating machine vision for the control of mobile robots can improve their navigation
capabilities (DeSouza & Kak (2002)). The approach of closing the control loop through a
vision system is called visual servoing (VS). The schemes in this control approach can be
classified according to the nature of the feedback information. Image data can be used
directly in the control loop (image-based schemes IBVS), for instance (Abdelkader et al. (2005),
Benhimane & Malis (2006)), or can be used to compute an estimate of pose parameters
(position-based schemes: PBVS) as in (Das et al. (2001), Fontanelli et al. (2009)). Hybrid
schemes combining these both approaches have been performed as well (Malis et al. (1999),
Fang et al. (2005)).
Most of the current efforts of the research on visual servoing focus on applications of
monocular vision. This chapter presents an IBVS approach to drive a wheeled mobile robot
equipped with a monocular camera onboard to a desired pose (position and orientation). The
desired pose is specified by a target image previously acquired, i.e., the teach-by-showing
strategy. In this context, a good way to relate the current and the target view is through
a geometric constraint: epipolar geometry or the homography model. A geometric
constraint is imposed on images in which there exist correspondences between features
(Hartley & Zisserman (2000)). The information provided by a geometric constraint can
be used directly as measurement for output feedback control. Comparing this two-view
geometric constraints, the epipolar geometry is a more general approach because it is not
constrained to planar objects or planar scenes. Currently, there also exist approaches that use
three views (Becerra et al. (2010)).
This chapter focuses on exploiting the epipolar geometry (EG) in an IBVS approach. This
constraint has been applied in some works (Basri et al. (1998), Rives (2000), Mariottini et al.
(2007), López-Nicolás et al. (2008)). These works deal with the teach-by-showing problem, in
which the target pose must be reached using only image data provided from the current and
target images. In (Basri et al. (1998)) and (Rives (2000)) are reported visual servoing schemes
based on epipolar geometry for manipulators. In the field of mobile robots, an epipolar-based
VS approach that takes into account the nonholonomic nature of the robots is introduced in
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(Mariottini et al. (2007)). The resultant motion in this approach steers the robot away from
the target while the lateral error is corrected, and after that, the robot moves backward to the
target position with a different control. This maneuvers are carried out in order to avoid a
singularity problem that is induced by the epipolar geometry. The problem arises when the
interaction matrix relating the robot velocities and the rate of change of the epipoles becomes
singular. The motion strategy has been improved by driving the robot directly toward the
target in the approach presented in (López-Nicolás et al. (2008)), however, in this work, one of
the control inputs is not computed when the singularity occurs.
Although some of the previous works claim to achieve good robustness against camera
parameters uncertainty, there is not a theoretical support of it. This chapter presents a sliding
mode (SM) control law that drives the robot moving always toward the target and deals with
the singularity problem. Thanks to the SM control, the robot is able to pass through the
singularity caused by the epipolar geometry using bounded control inputs. Moreover, the
visual control can be performed even when the initial robot pose is just on the singular point.
Additionally, the SM control provides the required robustness to the closed loop control in
this type of application. It is particularly important in the case of conventional perspective
cameras because the presence of camera calibration uncertainty. This has been tackled through
SM control in (Kim et al. (2006)) and (Becerra & Sagues (2008)). In this chapter, the last
work is extended to calibrated omnidirectional images given by a generic camera. This
type of camera is considered as an imaging system that approximately obeys the central
projection model (Geyer & Daniilidis (2000)). The use of a generic camera provides the
important advantage of keeping the target in the field of view. Wide field of view cameras
have been applied for the control of mobile robots, for instance in (Abdelkader et al. (2005))
and (Mariottini & Prattichizzo (2008)). Although the scheme described herein is a calibrated
approach, the benefits of SM control are present in the treatment of the singularity and
the robustness against image noise and the uncertainty in a control parameter (the distance
between the current and target locations).
The chapter is organized as follows. Section 2 introduces the mobile robot model, summarizes
the model of generic cameras and describes the way to estimate the epipolar geometry of this
type of cameras. Section 3 details the design procedure for the sliding mode control law.
Section 4 presents an stability analysis. Section 5 shows the performance of the closed-loop
control system via realistic simulations and finally, Section 6 provides the conclusions.

2. Mathematical modeling

2.1 Robot kinematics
Many wheeled mobile platforms can be represented as differential-drive robots, whose
kinematic model is expressed as the affine system ż = f (t, z) + B(t, z)u. The differential
kinematics of the robot to be controlled, in accordance with the frame defined in Fig. 1(a), is
as follows ⎡⎣ ẋ

ẏ
φ̇

⎤⎦ =

⎡⎣− sin φ 0
cos φ 0

0 1

⎤⎦ [
v
ω

]
, (1)

where, z = (x, y, φ)T represents the state of the robot, x(t) and y(t) are the robot position
in the plane and φ(t) is the orientation. Additionally, v(t) and ω(t) are the translational
and rotational input velocities. The affine model (1) has the particularity that f (t, z) = 0.
Hence, this is a driftless system (i.e. no motion takes place under zero input, or in control
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Fig. 1. Upper view of a mobile robot with a camera onboard and important variables of the
system, where {W} referes to the world frame and {R} to the robot frame.

theory concepts, any state is an equilibrium point under zero input). Furthermore, the
corresponding linear approximation in any point z(t) ∈ �3 does not have the property of
controlability. However, it fulfills the Lie Algebra rank condition (Isidori (1995)), in such a
way that controlability can be demonstrated from a nonlinear point of view.

2.2 Generic camera model
The constrained field of view of conventional cameras can be enhanced using wide field
of view imaging systems such as full view omnidirectional cameras, which capture images
as the one in Fig. 2(a). This can be achieved using some optic arrangements that
combine mirrors and lens, i.e., catadioptric imaging systems (Fig. 2(b)). These systems use
hyperboloidal, paraboloidal or ellipsoidal mirrors and have been well studied in the field
of computer vision (Baker & Nayar (1999)). According to this theory, all of them satisfy
the fixed view point constraint. In practice, with a careful construction of the system, it is
realistic to assume a central configuration and many robotic applications have proven its
effectiveness (Abdelkader et al. (2005), Benhimane & Malis (2006), Mariottini & Prattichizzo
(2008), Guerrero et al. (2008)).

(a) Omnidirectional image (b) Catadioptric imaging system

Fig. 2. Example of an omnidirectional image and the system to capture this type of images.

It is known that the imaging process performed by conventional and catadioptric cameras
can be modeled by a unique representation (Geyer & Daniilidis (2000)). Such unified
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projection model works properly for imaging systems having a single center of projection
(central cameras). Although fisheye cameras do not accomplish such property, some recent
experimental results have shown that the unified projection model is able to represent their
image formation process with the required accuracy for robotic applications (Courbon et al.
(2007)).
The unified projection model describes the image formation as a composition of two central
projections (Geyer & Daniilidis (2000)). The first is a central projection of a 3D point onto
a virtual unitary sphere and the second is a perspective projection onto the image plane.
According to (Barreto & Araujo (2005)), this generic model can be parameterized by (ξ,λ)
which are parameters describing the type of imaging system and by the matrix K containing
the intrinsic parameters

Kc =

⎡⎣ αx s x0
0 αy y0
0 0 1

⎤⎦ , (2)

where αx and αy represent the focal length of the camera in terms of pixel dimensions in the
x and y directions respectively, s is the skew parameter and (x0, y0) are the coordinates of the
principal point.
The parameter ξ encodes the nonlinearities of the image formation in the range 0 ≤ ξ ≤ 1
for the cases of catadioptric cameras and ξ > 1 for fisheye cameras. The parameter λ can be
seen as a factor for the focal length and it is already included in its estimated value. Thus, the
parameter ξ and the camera parameters can be obtained through a calibration process using
an algorithm for central catadioptric cameras like the one in (Mei & Rives (2007)).
The mapping of a point X in the 3D world with coordinates X =

[
X, Y, Z

]T in the camera
frame Fc resulting in the image point xic with homogeneous coordinates xh

ic can be divided
into three steps (refer to Fig. 3):

1. The world point is projected onto the unit sphere on a point Xc with coordinates Xc in Fc,
which are computed as Xc = X/ ‖X‖.

2. The point coordinates Xc are then changed to a new reference frame Oc centered in O =[
0, 0, −ξ

]T and perspectively projected onto the normalized image plane Z = 1− ξ:

xh =
[

xT , 1
]T

=
[

x, y, 1
]T

=
[

X
Z+ξ‖X‖ , Y

Z+ξ‖X‖ , 1
]T

.

3. The image coordinates expressed in pixels are obtained after a collineation K of the 2D
projected point xh

ic = Kxh.

The matrix K can be written as K = KcM, where Kc has been given in (2) and M is the
following diagonal matrix

M =

⎡⎣ λ− ξ 0 0
0 ξ − λ 0
0 0 1

⎤⎦ . (3)

Notice that, setting ξ = 0, the general projection model becomes the well known perspective
projection model. Images also depend on the extrinsic parameters C =(x, y, φ), i.e. the camera
pose in the plane relative to a global reference frame. Then an image is denoted by I (K, C).
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2.3 Epipolar geometry

X

cF

cO

tO

cX

tF

E

icx

tX

itx

x

K

cC

tC

Image plane

Optical 

  axis

Effective

viewpoint

ξ

Fig. 3. Generic model of the image formation and epipolar geometry between generic central
cameras.

Regarding to Fig. 3, let X be a 3D point and let Xc and Xt be the coordinates of that point
projected onto the unit spheres of the current Fc and target frame Ft. The epipolar plane
contains the effective viewpoints of the imaging systems Cc and Ct, the 3D point X and the
points Xc and Xt. The coplanarity of these points leads to the well known epipolar constraint

XT
c E Xt = 0, (4)

being E the essential matrix relating the pair of normalized virtual cameras. Normalized
means that the effect of the known calibration matrix has been removed and virtually, the
cameras can be represented as perspective. As typical, from this geometry it is possible to
compute the epipoles as the points lying on the base line and intersecting the corresponding
virtual image plane. Figure 4(a) shows the epipolar geometry for a pair of catadioptric systems
and Fig. 4(b) depicts the projection of the epipoles in the produced omnidirectional images.
The virtual representation of these imaging systems as perspective cameras is shown in Fig.
4(c) considering the planar motion constraint. A global reference frame centered in the origin
Ct = (0, 0, 0) of the target viewpoint is defined, as well as important parameters. Then, the
current camera location with respect to this reference is Cc = (x, z, φ). Assuming the described
framework in Fig. 1, where the camera location coincides with the robot location, the epipoles
can be written as a function of the robot state as follows:

ecx = αx
x cos φ + y sin φ

y cos φ− x sin φ
, (5)

etx = αx
x
y

.

Cartesian coordinates x and y can be expressed as a function of the polar coordinates d and ψ
as

x = −d sin ψ, y = d cos ψ, (6)
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(a) 3D epipolar geometry (EG). (b) EG in omnidirectional images. (c) Planar EG framework.

Fig. 4. Generic cameras can be treated as virtual perspective cameras, in which the epipolar
geometry is estimated as typical when the points on the unitary sphere are used.

with ψ = − arctan (etx/αx), φ − ψ = arctan(ecx/αx) and d2 = x2 + y2. For the case of
normalized cameras αx = 1 in (5) and in the subsequent equations.

3. Sliding mode control law

The goal of this work is to steer a mobile robot to a target pose by using the feedback
information provided by the x-coordinate of the epipoles for any type of central camera. The
visual servoing problem is transformed in a tracking problem for a nonlinear system, where
the references for the epipoles are defined. A robust tracking control law under image noise
and uncertainty of parameters is designed on the basis of SM control theory. We propose to
perform a smooth motion toward the target position by tracking sinusoidal references to drive
the epipoles to zero.
The main concern of the proposal is to deal with the singularity problem that arises because
the decoupling matrix of the system becomes singular in a point of the state trajectory.
This causes the translational velocity to grow unbounded when the system evolves near
to that point. This problem is considered by (Mariottini et al. (2007)), where reaching the
singular value is avoided during the servoing by using a particular motion strategy. In
(López-Nicolás et al. (2008)), one of the control inputs is not computed when the singularity
happens. Our strategy is able to pass through the singularity by switching to a bounded SM
control law, instead of avoiding to reach to it. Furthermore, this approach can be also used
when the initial robot pose is just on the singularity.
Let us define the outputs of the system using the x-coordinates of the epipoles for the current
image Ic(K, C2(t)) and the target one It(K, 0). Then, the two-dimensional output of the
system is

y = h (x) =
[

ecx, etx
]T . (7)

It can be seen from (5) that if both epipoles are zero implies x = 0, φ = 0 and y (depth
error) may be different to zero. From a control theory point of view this means that, when
the epipoles reach to zero the so-called zero dynamics is achieved in the robot system. Zero
dynamics is described by a subset of the state space that makes the output to be identically
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zero (Sastry (1999)). Thus, in the particular case of the robot system (1) with output vector (7),
this set is given as follows

Z∗ =
{[

x, y, φ
]T
| ecx ≡ 0, etx ≡ 0

}
(8)

=
{[

0, y, 0
]T , y ∈ R

}
.

Zero dynamics in this control system makes necessary a second step in which the remaining
depth error must be corrected. We address the depth correction by using a constant
translational velocity and the stop condition is given by thresholding the image error between
corresponding points of the current and the target views. The image error is defined as the
mean squared error between the p corresponding image points of the current image and
points of the target image, i.e.,

ε =
1
p

p

∑
j=1

∥∥∥xt,j − xc,j

∥∥∥ . (9)

In order to design the appropriate control law the following tracking error system (r-system)
is obtained by using the change of variables rc = ecx − ed

cx, rt = etx − ed
tx and the polar

coordinates (6).

[
ṙc
ṙt

]
=

⎡⎣− αx sin(φ−ψ)
d cos2(φ−ψ)

αx
cos2(φ−ψ)

−
αx sin(φ−ψ)

d cos2(ψ)
0

⎤⎦ [
υ
ω

]
−

[
ėd

cx
ėd

tx

]
. (10)

The system (10) has the form ṙ = M(φ, ψ)u − ėd, where M(φ, ψ) corresponds to the
decoupling matrix and ėd represents a known disturbance. It is evident that the decoupling
matrix loses rank if φ− ψ = nπ with n ∈ Z. For all the rest of the state space this matrix is
invertible, with inverse matrix

M−1(φ, ψ) =
1

αx

[
0 −

d cos2(ψ)
sin(φ−ψ)

cos2 (φ− ψ) − cos2 (ψ)

]
. (11)

We faced the tracking problem as an stabilization problem of the error system (10).

3.1 Decoupling-based control law
Firstly, in order to design a SMC law, we have to define suitable sliding surfaces. The simplest
way to do it for the r-system (10) is to use directly the errors as sliding surfaces, in such a way
that if there exist switching feedback gains that make the states to evolve in s = 0, then the
tracking problem is solved. Thus, the sliding surfaces are the following

s =

[
sc
st

]
=

[
rc
rt

]
=

[
ecx − ed

cx
etx − ed

tx

]
. (12)

Next, the equivalent control method is used to find switching feedback gains to drive the state
trajectory to s = 0 and to maintain it there. The equivalent control method consists in working
out the value of inputs from the equation ṡ = 0. The so-called equivalent control is then

ueq = M−1(φ, ψ)ėd. (13)
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A decoupling-based SMC law that ensures global stabilization of the r-system has the form
usm = ueq + udisc, where udisc is a two-dimensional vector containing switching feedback
gains. We propose the simplest form of these gains as follows

udisc = M−1(φ, ψ)

[
−ksm

c sign (sc)
−ksm

t sign(st)

]
, (14)

where ksm
c > 0 and ksm

t > 0 are control gains. Although usm can achieve global stabilization
of the r-system, it needs high gains and, consequently, the state trajectory may not reach the
sliding surfaces in a smooth way. This could cause a non-smooth behavior in the robot state
that is not valid in real situations. We add a pole placement term in the control law to alleviate
this problem

upp = M−1(φ, ψ)

[
−kc 0

0 −kt

] [
sc
st

]
, (15)

where kc > 0 and kt > 0 are control gains. Finally, the complete SMC law that achieves robust
global stabilization of the system (10) is as follows

udb =

[
υdb
ωdb

]
= ueq + udisc + upp. (16)

3.2 Bounded control law
The control law (16) utilizes the decoupling matrix and it presents the singularity problem for
the condition ecx = 0 (φ− ψ = nπ with n ∈ Z), which means that the camera axis of the robot
at its current pose is aligned with the baseline. We can note from (11) that the singularity only
affects the translational velocity computation. In order to pass through this singularity we
propose to commute to a direct sliding mode controller when φ−ψ is near to nπ. This kind of
controller has been studied for output tracking through singularities (Hirschorn (2002)). The
direct sliding mode controller is as follows

ub =

[
υb
ωb

]
=

[
−Msign (st b (φ, ψ))

−Nsign(sc)

]
, (17)

where M and N are suitable gains and b (φ, ψ) is a function that describes the change in sign
of the translational velocity when the state trajectory crosses the singularity. We can find out
this function from (10) as follows

ṙc = b1 (φ, ψ) υ + b2 (φ, ψ)ω − ėd
cx, (18)

ṙt = b3 (φ, ψ) υ− ėd
tx,

where b1 = −
αx sin(φ−ψ)
d cos2(φ−ψ)

, b2 = αx
cos2(φ−ψ)

, b3 = −
αx sin(φ−ψ)

d cos2(ψ)
. According to that, b2 is always

positive, and sign(b1) = sign(b3) = sign(− sin(φ− ψ)). Hence,

b (φ, ψ) = − sin(φ− ψ). (19)

The control law (17) with b (φ, ψ) as in (19) locally stabilizes the system (10) and is always
bounded.
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3.3 Desired references of the epipoles
As main requirement, the references to track must provide a smooth zeroing of the epipoles
starting from their initial values. Figure 5(a) shows two configurations of robot locations
for cases in which sign (e23) �= sign (e32). From these conditions, the epipoles are naturally
reduced to zero as the robot moves smoothly toward the target. Because of the nonholomic
motion constraint, any direct path reaching the target implies sign (e23) �= sign (e32).
Therefore, locations starting sign (e23) = sign (e32) need to be controlled to the situation of
sign (e23) �= sign (e32). This allows getting an adequate orientation from the very beginning
(Fig. 5(b)) in order to be able to align the robot with the target at the end of the first step. It is
worth emphasizing that this initial rotation is autonomously carried out through the control
inputs given by the described controllers. Thus, we define the following desired trajectories,
which are always opposite in sign each other

23
e

32
e

23
e

32
e +−

+

− 23
e

32
e

23
e

32
e

+

+−

−

(a) Condition where sign (etx) �= sign (ecx) (b) Condition where sign (etx) = sign (ecx)

Fig. 5. Motion strategy for different initial locations. For the cases in (a) a direct motion
toward the target is carried out and for those in (b), the robot rotates initially to reach the
same condition as in (a).

ed
cx (t) = S

ecx(0)
2

(
1 + cos

(π

τ
t
))

, 0 ≤ t ≤ τ (20)

ed
cx (t) = 0, τ < t < ∞

ed
tx (t) =

etx(0)
2

(
1 + cos

(π

τ
t
))

, 0 ≤ t ≤ τ

ed
tx (t) = 0, τ < t < ∞

where S = −sign (ecx(0)etx(0)) and T is the time to reach epipoles to zero. We highlight
that since our scheme is an IBVS approach, the desired trajectories in the image space play an
important role in the resulting Cartesian path. In fact, by only changing the trajectory for the
target epipole (related to the translational velocity) is possible to run our approach for car-like
robots. Thus, the references may also be used to constraint the target in the field of view.
However, as mentioned previously, this problem does not appear when using omnidirectional
vision.
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4. Stability analysis

In this section, the stability of both proposed sliding mode control laws is analyzed. Given
that the relationship between zeroing the epipoles and the robot state has been established
through the zero dynamics, we focus on demonstrating the convergence property of the
tracking control law as stated in the following proposition.

Proposition 1. A commuted control law that combines the decoupling-based control (16) by switching
to the bounded control (17) whenever |φ− ψ| < nπ + Th, where Th is a suitable threshold value and
n ∈ Z, achieves global stabilization of the system (10). Moreover, global stabilization is achieved even
with uncertainty in parameters.
Proof. Stabilization of the system (10) is proved by showing that the sliding surfaces can be
reached in a finite time (existence conditions of sliding modes). Let be the natural Lyapunov
function for a sliding mode controller

V = V1 + V2, V1 =
1
2

s2
c , V2 =

1
2

s2
t , (21)

which accomplish V(sc = 0, st = 0) = 0 and V > 0 for all sc �= 0, st �= 0.

V̇ = V̇1 + V̇2 = scṡc + stṡt. (22)

We analyze each term of (22) for the decoupling-based controller (16)

V̇1 = sc

(
−

αx

αxe

(ksm
c sign (sc) + kcsc) + A

)
= −

(
αx

αxe

(
ksm

c |sc|+ kcs2
c

)
− sc A

)
,

V̇2 = st

(
−

αxde

αxe d
(ksm

t sign(st) + ktξt) + B
)
= −

(
αxde

αxe d

(
ksm

t |st|+ kts2
t

)
− stB

)
,

where A = αx
αxe

(
de
d − 1

) (
ėd

tx − ksm
t sign(st)− ktst

)
cos2(ψ)

cos2(φ−ψ)
+

(
αx
αxe
− 1

)
ėd

cx,

B =
(

αxde
αxe d − 1

)
ėd

tx, and αxe , de represent estimated values for the corresponding system
parameter. We can see that

V̇1 ≤ −

(
αx

αxe

(ksm
c + kc |sc|)− |A|

)
|sc| ,

V̇2 ≤ −

(
αxde

αxe d
(ksm

t + kt |st|)− |B|
)
|st| .

V̇1 and V̇2 are negative definite iff the following inequalities are guaranteed for all sc �= 0,
st �= 0

ksm
c + kc |sc| >

αxe

αx
|A| , (23)

ksm
t + kt |st| >

αxe d
αxde

|B| .

Therefore, V̇ < 0 iff both inequalities (23) are fulfilled. Global convergence to the sliding
surfaces can be achieved regardless of uncertainty in parameters.
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Now, let us develop the existence conditions of sliding modes for the bounded controller (17).
The same Lyapunov function (21) is used. For each term of (22) after some basic operations
we have

V̇1 = −N
αx

cos2 (φ− ψ)
|sc| − scėd

cx − scC,

V̇2 = −M
αx |b (φ, ψ)|

d cos2 (ψ)
|st| − stėd

tx,

where C = M αx |b(φ,ψ)|
d cos2(φ−ψ)

sign(st) and b (φ, ψ) is given in (19). We can see that

V̇1 ≤ −

(
N

αx

cos2 (φ− ψ)
−

∣∣∣ėd
cx

∣∣∣− |C|) |sc| ,

V̇2 ≤ −

(
M

αx |b (φ, ψ)|

d cos2 (ψ)
−

∣∣∣ėd
tx

∣∣∣) |st| .

V̇1 and V̇2 are negative definite iff the following inequalities are assured for all sc �= 0, st �= 0

N >
cos2 (φ− ψ)

αx

(
|C|+

∣∣∣ėd
cx

∣∣∣) , (24)

M >
d cos2 (ψ)

αx |b (φ, ψ)|

∣∣∣ėd
tx

∣∣∣ .

Therefore, V̇ < 0 iff both inequalities (24) are fulfilled. The bounded controller does not need
any information of system parameters and thus, its robustness is implicit.
According to the existence conditions of sliding modes, the bounded controller (17) is able
to locally stabilize the system (10); its region of attraction is bigger as long as the control
gains M and N are higher. Nevertheless, this controller can not achieve the smooth behavior
demanded for real situations and it is only used to cross the singularity. Due to the control
strategy commutes between two switching control laws and each one acts inside of its region
of attraction, respectively, the commutation between the control laws does not affect the
stability of the control system. The decoupling-based controller ensures entering to the region
of attraction of the bounded one.
Once sliding surfaces are reached for any case of SMC law, the system’s behavior is
independent of uncertainties and disturbances. It is clear that uncertainties in the system
(10) fulfill the matching condition and then, robustness of the control system is accomplished.

5. Performance evaluation

The evaluation of the approach has been carried out through realistic simulations. These
simulations have been performed in Matlab with a sampling time of 100 ms. The results show
that the main objective of driving the robot to a desired pose ((0,0,0o) in all the cases) is attained
in spite of passing through the singularity that occurs in the first step for some initial poses,
and moreover, the task is accomplished even when the robot starts exactly in a singular pose.
The good performance of the approach with noise in the images is also reported.
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Regarding to the parameters of the control law, the initial distance between the current and
target locations (de) is fixed to 10 m in all the cases. The threshold to switch to the bounded
control law (Th) is set to 0.03 rad. Related to the control gains, they are set to kc = 2, kt = 1,
ksm

c = 0.2, ksm
t = 0.2, M = 0.1 and N = 0.06. Synthetic images of size 640×480 pixels

are used to estimate the epipoles at each instant time. These images are obtained by using
adequate camera parameters in the generic model of Section 2.2. We present results with
hypercatadioptric, paracatadioptric and also fisheye cameras, which can be approximately
represented with the same model (Courbon et al. (2007)).
The simulations are carried out for four different initial locations: (-5,-9,-50o), (-4,-14,0o),
(8,-16,10o) and (2.5,-12,11.77o) and consequently, the fixed value of de represents a significative
uncertainty in the control parameter. In spite of that, the good behavior of the approach can
be seen in the image space through the pictures in Fig. 6. This figure shows the motion of the
point features for the different types of synthetic images used. We can notice that the points
of the images at the end of the motion (marker “×”) are practically the same as the ones in the
target images (marker “O”).
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(a) (-4,-14,0o) Paracatad. (b) (8,-16,10o) Fisheye. (c) (2.5,-12,11.77o) Hypercatad.

Fig. 6. Behavior of the approach in the image space for different omnidirectional images.

Figure 7(a) shows the resultant paths and the evolution of the epipoles for each one of the
initial locations. The case (-5,-9,-50o) corresponds to an initial location from where the robot
can exert a direct navigation to the target and has been tested using a hypercatadioptric
camera. In the cases (-4,-14,0o) and (8,-16,10o), the robot starts with sign (ecx) = sign (etx)
and by driving the epipoles to the desired trajectories, ecx changes its sign during the first
seconds (Fig. 7(b)). It causes a rotation of the robot, and then, it begins a direct motion toward
the target. These cases are tested using paracatadiotric and fisheye cameras respectively.
The initial location (2.5,-12,11.77o), tested with hypercatadioptric images, corresponds to a
special case where the state trajectory just starts on the singularity ecx = 0. The line from the
initial position to the target shows that the camera axis is aligned with the baseline for this
location. When the robot starts just on the singularity, we assign a suitable amplitude to the
desired trajectory for the current epipole. Given that |φ− ψ| is less than the threshold, the
bounded controller takes the system out of the singularity and then, the epipoles evolve as
shown in Fig. 7(b). In all the cases both epipoles reach to zero in τ = 60 s, which is fixed
through the desired trajectories.
From the graphics of the epipoles, it can be seen that the state trajectory crosses the singularity
ecx = 0 for the initial locations (-4,-14,0o) and (8,-16,10o). The behavior of the robot state is
presented in Fig. 8(a) for the former case. This is obtained using the bounded input velocities
of Fig. 8(b). It is worth noting that the control inputs are maintained bounded even when the
epipoles are close to zero after 45 s, which ensures entire correction of orientation and lateral
position. It takes approximately 3 s more to correct the remaining depth error using a constant
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Fig. 7. Behavior of the approach in the Cartesian space and evolution of epipoles for different
initial locations.
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Fig. 8. Evolution of the position and orientation of the robot and the velocities given by the
sliding mode control law for a case where the singularity is crossed, (-4,-14,0o) of Fig. 7.

translational velocity υ = 0.1 m/s in this case, but this time may be different for each initial
location with the same velocity. The stop condition is given by thresholding the mean squared
error (9) between the corresponding image points of the current image and the points of the
target image.
Finally, Fig. 9(a) shows the performance of the approach under image noise for the initial
location (5,-13,15o). An image noise with standard deviation of 0.5 pixels has been added and
the time to reach the alignment with the target is set to τ = 80 s. During the remaining 9 s,
depth correction is carried out by using a constant translational velocity and then, each one of
the state variables reaches zero (Fig. 9(b)). It is clear the presence of the noise in the motion
of the image points in Fig. 9(c). It can be seen in Fig. 10(a) that the estimated epipoles are
more affected by the noise as the robot approaches to the target and eventually it turns out
to be unstable (problem of short baseline). However, after 80 s only the sign of ecx is used to
compute the rotational velocity that keeps the robot aligned to the target (Fig. 10(b)).
According to these results when testing the performance of the proposed visual control
scheme, the use of SM control provides good benefits in order to solve the singularity problem
and robustness against image noise. Additionally, it is worth noting that the target location
is always reached with an accuracy in the order of centimeters for position and negligible
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(a) Path on the plane. (b) Evolution of the robot state. (c) Motion of the image points.

Fig. 9. Robustness under image noise using a hypercatadioptric imaging system.
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Fig. 10. Performance of the reference tracking and the velocities given by the sliding mode
control law for the servoing task of Fig. 9.

orientation error. This is achieved in spite of the uncertainty in the distance between the
current and the target locations (d). As mentioned before, it is enough to fix this value in
the controller thanks to the robustness of the control law. We claim that the second phase
regarding to depth correction may be carried out exploiting also the information provided
by the epipolar geometry. This could be a way to avoid the switching to a totally different
approach for depth correction.

6. Conclusions

In this chapter, a robust control law to perform image-based visual servoing for
differential-drive mobile robots has been presented. The visual control utilizes the usual
teach-by-showing strategy, in which the desired location is specified by a target image
previously acquired. The mobile robot is driven toward the target by comparing a set of
visual features in the current view of the onboard camera and those on the target image. The
visual features are gathered through the epipolar geometry and exploited in a sliding mode
control law, which provides good robustness against image noise and uncertainty in camera
parameters.
The major contribution of this work is the validity of the approach for generic imaging
systems. This extends the applicability of the proposed control scheme given that a generic
camera allows a major maneuverability of the robot than a conventional camera because
its wide field of view. Additionally, the use of sliding mode control allows to solve the
problem of passing through a singularity induced by the epipoles, maintaining bounded
inputs. Furthermore, the visual control accomplishes its goal even when the robot starts on
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the singularity. The good performance of the approach has been evaluated through realistic
simulations using virtual images.
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1. Introduction

Nowadays, the major advancements in the control of motion systems are due to the automatic
control theory. Motion control systems are characterized by complex nonlinear dynamics and
can be found in the robotic, automotive and electromechanical area, among others. In such
systems it is always wanted to impose a desired behavior in order to cope with the control
objectives that can go from velocity and position tracking to torque and current tracking
among other variables. Motion control systems become vulnerable when the output tracking
signals present small oscillations of finite frequency known as chattering. The chattering
problem is harmful because it leads to low control accuracy; high wear of moving mechanical
parts and high heat losses in power circuits. The chattering phenomenon can be caused
by the deliberate use of classical sliding mode control technique. This control technique is
characterized by a discontinuous control action with an ideal infinite frequency. When fast
dynamics are neglected in the mathematical model such phenomenon can appear. Another
situation responsible for chattering is due to implementation issues of the slidingmode control
signal in digital devices operating with a finite sampling frequency, where the switching
frequency of the control signal cannot be fully implemented. Despite of the disadvantage
presented by the sliding mode control, this is a popular technique among control engineer
practitioners due to the fact that introduces robustness to unknown bounded perturbations
that belong to the control sub-space; moreover, the residual dynamic under the sliding regime,
i.e., the sliding mode dynamic, can easily be stabilized with a proper choice of the sliding
surface. A proof of their good performance in motion control systems can be found in the
book by Utkin et al. (1999). A solution to this problem is the high order sliding mode (HOSM)
technique, Levant (2005). This control technique maintains the same sliding mode properties
(in this sense, first-order sliding mode) with the advantage of eliminating the chattering
problem due to the continuous-time nature of the control action. The actual disadvantage of
this control technique is that the stability proofs are based on geometrical methods since the
Lyapunov function proposing results in a difficult task, Levant (1993). The work presented
in Moreno & Osorio (2008) proposes quadratic like Lyapunov functions for a special case of
second-order sliding mode controller, the super-twisting sliding mode controller (STSMC),
making possible to obtain an explicit relation for the controller design parameters.
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2 Sliding Mode Control

In this chapter, two motion control problems will be addressed. First, a position trajectory
tracking controller for an under-actuated robotic system known as the Pendubot will be
designed. Second, a rotor velocity and magnetic rotor flux modulus tracking controller will
be designed for an induction motor.
The Pendubot (see Spong & Vidyasagar (1989)) is an under-actuated robotic system,
characterized by having less actuators than links. In general, this can be a natural design
due to physical limitations or an intentional one for reducing the robot cost. The control of
such robots is more difficult than fully actuated ones. The Pendubot is a two link planar
robot with a dc motor actuating in the first link, with the first one balancing the second
link. The purpose of the Pendubot is research and education inside the control theory of
nonlinear systems. Common control problems for the Pendubot are swing-up, stabilization
and trajectory tracking. In this work, a super-twisting sliding mode controller for the
Pendubot is designed for trajectory tracking, where the proper choice of the sliding function
can easily stabilize the residual slidingmode dynamic. A novel Lyapunov function is used for
a rigorous stability analysis of the controller here designed. Numeric simulations verify the
good performance of the closed-loop system.
In the other hand, induction motors are widely used in industrial applications due to its
simple mechanical construction, low service requirements and lower cost with respect to DC
motors that are also widely used in the industrial field. Therefore, inductionmotors constitute
a classical test bench in the automatic control theory framework due to the fact that represents
a coupled MIMO nonlinear system, resulting in a challenging control problem. It is worth
mentioning that there are several works that are based on a mathematical induction motor
model that does not consider power core losses, implying that the induction motor presents
a low efficiency performance. In order to achieve a high efficiency in power consumption
one must take into consideration at least the power core losses in addition to copper losses;
then, to design a control law under conditions obtained when minimizing the power core
and copper losses. With respect to loss model based controllers, there is a main approach
for modeling the core, as a parallel resistance. In this case, the resistance is fixed in parallel
with the magnetization inductance, increasing the four electrical equations to six in the (α, β)
stationary reference frame, Levi et al. (1995). In this work, one is compelled to design a
robust controller-observer scheme, based on the super-twisting technique. A novel Lyapunov
function is used for a rigorous stability analysis. In order to yield to a better performance of
induction motors, the power core and copper losses are minimized. Simulations are presented
in order to demonstrate the good performance of the proposed control strategy.
The remaining structure of this chapter is as follows. First, the sliding mode control will
be revisited. Then, the Pendubot is introduced to develop the super-twisting controller
design. In the following part, the induction motor model with core loss is presented, and
the super-twisting controller is designed in an effort of minimizing the power losses. Finally
some comments conclude this chapter.

2. Sliding mode control

The sliding mode control is a well documented control technique, and their fundamentals
can be founded in the following references, Utkin (1993), Utkin et al. (1999), among others.
Therefore in this section, the main features of this control technique are revisited in order to
introduce the super-twisting algorithm.
The first order or classical sliding mode control is a two-step design procedure consisting
of a sliding surface (S = 0) design with relative degree one w.r.t. the control (the control
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appears explicitly in Ṡ), and a discontinuous control action that ensures a sliding regime or a
sliding mode. When the states of the system are confined in the sliding mode, i.e., the states
of the system have reached the surface, the convergence happens in a finite-time fashion,
moreover, the matched bounded perturbations are rejected. From this time instant the motion
of the system is known as the sliding mode dynamic and it is insensitive to matched bounded
perturbations. This dynamic is commonly characterized by a reduced set of equations. At
the initial design stage, one must predict the sliding mode dynamic structure and then to
design the sliding surface in order to stabilize it. It is worth mentioning that the sliding
mode dynamic (commonly containing the output) is commonly asymptotically stabilized.
This fact is sometimes confusing since one can expect to observe the finite-time convergence
at the output of the system, but as mentioned above the finite-time convergence occurs at
the designed surface. The main disadvantage of the classical sliding mode is the chattering
phenomenon, that is characterized by small oscillations at the output of the system that can
result harmful to motion control systems. The chattering can be developed due to neglected
fast dynamics and to digital implementation issues.
In order to overcome the chattering phenomenon, the high-order sliding mode concept
was introduced by Levant (1993). Let us consider a smooth dynamic system with an
output function S of class Cr−1 closed by a constant or dynamic discontinuous feedback
as in Levant & Alelishvili (2007). Then, the calculated time derivatives S, Ṡ, . . . , Sr−1, are
continuous functions of the system state, where the set S = Ṡ = . . . = Sr−1 = 0 is non-empty
and consists locally of Filippov trajectories. The motion on the set above mentioned is said
to exist in r-sliding mode or rth order sliding mode. The rth derivative Sr is considered
to be discontinuous or non-existent. Therefore the high-order sliding mode removes the
relative-degree restriction and can practically eliminate the chattering problem.
There are several algorithms to realize HOSM. In particular, the 2nd order sliding mode
controllers are used to zero the outputs with relative degree two or to avoid chattering while
zeroing outputs with relative degree one. Among 2nd order algorithms one can find the
sub-optimal controller, the terminal sliding mode controllers, the twisting controller and the
super-twisting controller. In particular, the twisting algorithm forces the sliding variable S
of relative degree two in to the 2-sliding set, requiring knowledge of Ṡ. The super-twisting
algorithm does not require Ṡ, but the sliding variable has relative degree one. Therefore,
the super-twisting algorithm is nowadays preferable over the classical siding mode, since it
eliminates the chattering phenomenon.
The actual disadvantage of HOSM is that the stability proofs are based on geometrical
methods, since the Lyapunov function proposal results in a difficult task, Levant (1993). The
work presented in Moreno & Osorio (2008) proposes quadratic like Lyapunov functions for
the super-twisting controller, making possible to obtain an explicit relation for the controller
design parameters. In the following lines this analysis will be revisited.
Let us consider the following SISO nonlinear scalar system

σ̇ = f (t, σ) + u (1)

where f (t,σ) is an unknown bounded perturbation term and globally bounded by | f (t,σ)| ≤
δ|σ|1/2 for some constant δ > 0. The super-twisting sliding mode controller for perturbation
and chattering elimination is given by

u = −k1
√
|σ|sign(σ) + v

v̇ = −k2sign(σ). (2)
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System (1) closed by control (2) results in

σ̇ = −k1
√
|σ|sign(σ) + v+ f (t,σ)

v̇ = −k2sign(σ). (3)

Proposing the following candidate Lyapunov function:

V = 2k2|σ|+ 1
2
v2 +

1
2
(k1|σ|1/2sign(σ)− v)2

= ξTPξ

where ξT =
(|σ|1/2sign(σ) v

)
and

P =
1
2

(
4k2 + k21 −k1
−k1 2

)
,

Its time derivative along the solution of (3) results as follows:

V̇ = − 1
|σ1/2| ξ

TQξ +
f (t,σ)
|σ1/2| q

T
1 ξ

where

Q =
k1
2

(
2k2 + k21 −k1
−k1 1

)
,

qT1 =
(
2k2 + 1

2 k
2
1 − 1

2 k1
)
.

Applying the bounds for the perturbations as given inMoreno & Osorio (2008), the expression
for the derivative of the Lyapunov function is reduced to

V̇ = − k1
2|σ1/2| ξ

TQ̃ξ

where

Q̃ =

(
2k2 + k21 − ( 4k2k1

+ k1)δ −k1 + 2δ

−k1 + 2δ 1

)
.

In this case, if the controller gains satisfy the following relations

k1 > 2δ, k2 > k1
5δk1 + 4δ2

2(k1 − 2δ)
,

then, Q̃ > 0, implying that the derivative of the Lyapunov function is negative definite.

3. STSMC for an under-actuated robotic system

In this section a super-twisting sliding mode controller for the Pendubot is designed. The
Pendubot is schematically shown in Figure 1.
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Fig. 1. Schematic diagram of the Pendubot.

3.1 Mathematical model of the Pendubot
The equation of motion for the Pendubot can be described by the following general
Euler-Lagrange equation Spong & Vidyasagar (1989):

D(q)q̈+ C(q, q̇) + G(q) + F(q̇) = τ (4)

where q = [q1, q2]T ∈ �n is the vector of joint variables (generalized coordinates), q1 ∈ �m

represents the actuated joints, and q2 ∈ �(n−m) represents the unactuated ones. D(q) is the
n× n inertia matrix, C(q, q̇) is the vector of Coriolis and centripetal torques, G(q) contains the
gravitational terms, F(q̇) is the vector of viscous frictional terms, and τ is the vector of input
torques. For the Pendubot system, the dynamic model (4) is particularized as

[
D11 D12
D12 D22

] [
q̈1
q̈2

]
+

[
C1
C2

]
+

[
G1
G2

]
+

[
F1
F2

]
=

[
τ1
0

]

where D11(q2) = m1l2cl + m2(l21 + l2c2 + 2l1lc2 cos q2) + I1 + I2, D12(q2) = m2(l2c2 +

l1lc2 cos q2) + I2, D22 = m2l2c2 + I2, C1(q2, q̇1, q̇2) = −2m2l1lc2q̇1q̇2 sin q2 − m2l1lc2q̇22 sin q2,
C2(q2, q̇1) = m2l1lc2q̇21 sin q2, G1(q1, q2) = m1glc1 cos q1 + m2gl1 cos q1 + m2glc2 cos (q1 + q2),
G2(q1, q2) = m2glc2 cos (q1 + q2), F1(q̇1) = μ1q̇1, F2(q̇2) = μ2q̇2, with m1 and m2 as the
mass of the first and second link of the Pendubot respectively, l1 is the length of the first
link , lc1 and lc2 are the distance to the center of mass of link one and two respectively, g is
the acceleration of gravity, I1 and I2 are the moment of inertia of the first and second link
respectively about its centroids, and μ1and μ2 are the viscous drag coefficients. The nominal
values of the parameters are taken as follows: m1 = 0.8293, m2 = 0.3402, l1 = 0.2032,
lc1 = 0.1551, lc2 = 0.1635125, g = 9.81, I1 = 0.00595035, I2 = 0.00043001254, μ1 = 0.00545,
μ2 = 0.00047. Choosing x =

(
x1 x2 x3 x4

)T
=

(
q1 q2 q̇1 q̇2

)T as the state vector, u = τ1 as
the input, and x2 as the output, the description of the system can be given in state space form
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as:

ẋ(t) = f (x) + g(x)u(t) (5)

e(x,w) = x2 − w2

ẇ = s(w) (6)

where e(x,w) is output tracking error, w = (w1,w2)
T, and w2 as the reference signal generated

by the known exosystem (6),

f (x) =

⎛
⎜⎜⎝

f1(x3)
f2(x4)
f3(x)

f4(x1, x2, x3)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x3
x4

b3(x2)p1(x)
b4(x2)p2(x)

⎞
⎟⎟⎠ ,

g(x) =

⎛
⎜⎜⎝

b1
b2

b3(x2)
b4(x2)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
D22

D11(x2)D22−D2
12(x2)−D12(x2)

D11(x2)D22−D2
12(x2)

⎞
⎟⎟⎟⎠ ,

s(w) =
(

αw2
−αw1

)
,

p1(x) =
D12(x2)

D22
(C2(x2, x3) + G2(x1, x2) + F2(x4))− C1(x2, x3, x4)− G1(x1, x2)− F1(x3),

p2(x) =
D11(x2)

D12
(C2(x2, x3) + G2(x1, x2) + F2(x4))− C1(x2, x3, x4)− G1(x1, x2)− F1(x3).

3.2 Control design
Now, the steady-state zero output manifold π(w) = (π1(w),π2(w),π3(w),π4(w))T is
introduced. Making use of its respective regulator equations:

∂π1(w)
∂w

s(w) = π3(w) (7)

∂π2(w)
∂w

s(w) = π4(w) (8)

∂π3(w)
∂w

s(w) = b3(π2(w))p1(π(w)) + b3(π2(w))c(w) (9)

∂π4(w)
∂w

s(w) = b4(π2(w))p2(π(w)) + b4(π2(w))c(w) (10)

0 = π2(w)− w2 (11)

π/2 = π1(w) + π2(w) (12)

with c(w) as the steady-state value for u(t) that will be defined in the following lines. From
equation (11) one directly obtains π2(w) = w2, then, replacing π2(w) in equation (8) yields
to π4(w) = −αw1. For calculating π1(w) and π3(w), the solution of equations (7) and (9)
are needed, but in general this is a difficult task, that it is commonly solved proposing an
approximated solution as in Ramos et al. (1997) and Rivera et al. (2008). Thus, one proposes
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the following approximated solution for π1(w)

π1(w) = a0 + a1w1 + a2w2 + a3w
2
1 + a4w1w2 + a5w

2
2 + a6w

3
1

+a7w
2
1w2 + a8w1w

2
2 + a9w

3
2 +O4(‖w‖1) (13)

replacing (13) in (7) and chosing α = 0.3 yields the approximated solution for π3(w)

π3(w) = 0.3a1w2 − 0.3a2w1 + 0.6a3w1w2 + 0.3a4w
2
2 − 0.3a4w

2
1 − 0.6a5w2w1 + 0.9a6w2

1w2

+0.6a7w1w
2
2 − 0.3a7w3

1 + 0.3a8w3
2 − 0.6a8w2

1w2 − 0.9a9w2
2w1+O4(‖w‖1). (14)

Calculating from (10) c(w) = −p2(π(w))− α2w2/b4(π2(w)), and using it along with (14) in
equation (9) and performing a series Taylor expansion of the right hand side of this equation
around the equilibriumpoint (π/2, 0, 0, 0)T , then, one can find the values ai (i = 0, . . . , 9) if the
coefficients of the same monomials appearing in both side of such equation are equalized. In
this case, the coefficients results as follows: a0 = 1.570757, a1 = −0.00025944, a2 = −1.001871,
a3 = 0.0, a4 = 0.0, a5 = 0.0, a6 = 0.0, a7 = 0.001926, a8 = 0.0, a9 = −0.00001588. It is
worth mentioning that there is a natural steady-state constraint (12) for the Pendubot (see
Figure 1), i.e., the sum of the two angles, q1 and q2 equals π/2. Using such constraint one
can easily calculate π1a(w) = π/2− π2(w), and replacing π1a(w) in equation (7) yields to
π3a(w) = αw1, where the sub-index a refers to an alternative manifold. This result was
simulated yielding to the same results when using the approximate manifold, which is to
be expected if the motion of the pendubot is forced only along the geometric constraints.

Then, the variable z = x− π(w) =
(
z1, z2

)T is introduced, where

z1 =
(
z1, z2, z3

)T
=

(
x1 − π1, x2 − π2, x3 − π3

)T

z2 = z4 = x4 − π4. (15)

Then, system (5) is represented in the new variables (15) as

ż1 = z3 + π3 − ∂π1
∂w

s(w)

ż2 = z4 + π4 − ∂π2

∂w
s(w)

ż3 = b3(z2 + π2)p1(z+ π) + b3(z2 + π2)u− ∂π3

∂w
s(w)

ż4 = b4(z2 + π2)p2(z+ π) + b4(z2 + π2)u− ∂π4
∂w

s(w) (16)

e(z,w) = z2 + π2 − w2

ẇ = s(w).

We now define the sliding manifold:

σ = z4 + Σ1(z1, z2, z3)T, Σ1 = (k1, k2, k3) (17)

and by taking its derivative along the solution of system (16) results in

σ̇ = φ(w, z) + γ(w, z)u (18)
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where

φ(w, z) = b4(z2 + π2)p2(z+ π)− ∂π4
∂w

s(w) + k1(z3 + π3 − ∂π1
∂w

s(w))

+ k2(z4 + π4 − ∂π2

∂w
s(w)) + k3(b3(z2 + π2)p1(z+ π)− ∂π3

∂w
s(w)),

γ(w, z) = b4(z2) + π2 + k3b3(z2 + π2),

moreover, one can assume that φ(w, z) is an unknown perturbation term bounded by
|φ(w, z)| ≤ δφ with δφ > 0. At this point, one can propose the super-twisting controller as
follows:

u = (−ρ1

√
|σ|sign(σ) + v)/γ(w, z)

v̇ = −ρ2sign(σ), (19)

and the system (18) closed-loop by control (19) results in

σ̇ = −ρ1

√
|σ|sign(σ) + v+ φ(w, z)

v̇ = −ρ2sign(σ), (20)

where the controller gains ρ1 and ρ2 are determined in a similar fashion to the procedure
outlined in the previous section.
When the sliding mode occurs, i.e., σ = 0 one can easily determine from (17) that

z4 = −k1z1 − k2z2 − k3z3

moreover the order of system (16) reduces in one, obtaining the sliding mode dynamic, i.e.,

ż1 = φsm(w, z) = f1(w, z) + g1(w, z)ueq|z4=−k1z1−k2z2−k3z3 (21)

e(z,w) = z2 + π2 − w2

ẇ = s(w).

with

f1 =

⎛
⎜⎝

z3 + π3 − ∂π1
∂w s(w)

z4 + π4 − ∂π2
∂w s(w)

b3(z2 + π2)p1(z+ π)− ∂π3
∂w s(w)

⎞
⎟⎠ , g1(w, z) =

⎛
⎝

0
0

b3(z2 + π2)

⎞
⎠ ,

and ueq as the equivalent control calculated from σ̇ = 0 as

ueq = − φ(w, z)
b4(w, z) + k3b3(w, z)

.

The sliding function parameters k1, k2 and k3 should stabilize the sliding mode dynamic (21).
For a proper choice of such constant parameters one can linearize the sliding mode dynamic

ż1 = Asm(κ)z1

where Asm(κ) = ∂φsm/∂z1 |z1=0, with κ = (k1, k2, k3). In order to choose the design
parameters, a polynomial with desired poles is proposed, pd(s) = (s− λ1)(s− λ2)(s− λ3),
such that, the coefficients of the characteristic equation that results from the matrix Asm(κ) are
equalized with the ones related with pd(s), i. e., det(sI − Asm(κ)) = pd(s), in such manner
one can find explicit relations for κ. In this case limt→∞z = 0, accomplishing with the control
objective.

244 Sliding Mode Control



Super-Twisting Sliding Mode in Motion
Control Systems 9

0 10 20 30 40
−10

−5

0

5

10

s

de
g.

ω
2

x
2

0 10 20 30 40
80

85

90

95

100

s

x 1  (
de

g)

0 10 20 30 40
−0.5

0

0.5

1

1.5

s

σ

0 10 20 30 40
−2

−1

0

1

2

3

4

s

u 
 (

N
−

m
)

Fig. 2. a) Output tracking of the angle of the second link. b) Angle of the first link. c) Sliding
surface. d) Control signal.

3.3 Simulations
In order to show the performance of the control methodology here proposed, simulations
are carried out. The initial condition for the Pendubot is chosen as follows: x1(0) =
1.5, x2(0) = 0.09. Moreover, plant parameter variations are considered from time t = 0,
due to possible measurement errors, therefore, the mass of the second link is considered as
m2 = 0.5, the moment of inertias of the first and second link are assumed to be I1 = 0.007
and I2 = 0.0006 respectively and the frictions of the first and second link are μ1 = 0.01 and
μ2 = 0.001 respectively. The results are given in Fig. 2, where the robust performance of the
super-twisting controller is put in evidence.

4. STSMC for induction motors with core loss

4.1 Induction motor model with core loss
In this section a super-twisting sliding mode controller for the induction motor is designed
for copper and core loss minimization. Now we show the nonlinear affine representation
for the induction motor with core loss in the stationary (α, β) reference frame taken from
Rivera Dominguez et al. (2010):

dω

dt
= η0(ψαiβ − ψβiα)− Tl

J
dψα

dt
= −η4ψα − Npωψβ + η4Lmiα,Lm
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dψβ

dt
= −η4ψβ + Npωψα + η4Lmiβ,Lm

diα,Lm
dt

= −(η1 + η2)iα,Lm +
η1
Lm

ψα + η2iα

diβ,Lm
dt

= −(η1 + η2)iβ,Lm +
η1
Lm

ψβ + η2iβ

diα
dt

= −(Rsη3 + η5)iα − η1η3ψα

+ (η5 + η1η3Lm)iα,Lm + η3vα

diβ
dt

= −(Rsη3 + η5)iβ − η1η3ψβ

+ (η5 + η1η3Lm)iβ,Lm + η3vβ (22)

where
η0 =

3LmNp
2J(Lr − Lm)

, η1 =
Rc

Lr − Lm
,

η2 =
Rc

Lm
, η3 =

1
Ls − Lm

,

η4 =
Rr

Lr − Lm
, η5 =

Rc

Ls − Lm
.

with ω as the rotor velocity, vα, vβ are the stator voltages, iα, iβ are the stator currents,
iα,Lm, iβ,Lm are the magnetization currents and ψα,ψβ are the rotor fluxes, with Np as the
number of pole pairs, Rs, Rr and Rc as the stator, rotor and core resistances respectively, Lls,
Llr and Lm as the stator leakage, rotor leakage and magnetizing inductances respectively.

4.2 Transformation to the (d, q) rotating frame
Now, the induction motor model (22) will be transformed to the well known (d, q) reference
frame by means of the following change of coordinates

[
id

iq

]
= e−Jθψ

[
iα

iβ

]
,

[
ψd

ψq

]
= e−Jθψ

[
ψα

ψβ

]

[
idLm

iqLm

]
= e−Jθψ

[
iαLm

iβLm

]
,

[
vα

vβ

]
= eJθψ

[
vd

vq

]

where

e−Jθψ =

[
cos θψ sin θψ

− sin θψ cos θψ

]

with

θψ = arctan
(

ψβ

ψα

)
.
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The field oriented or (d, q)model of the induction motor with core loss is now shown

˙θψ = npω +
η4LmiqLm

ψd

dω

dt
= η0iqψd −

Tl
J

dψd
dt

= −η4ψd + η4LmidLm

didLm

dt
= − (η1 + η2) idLm

+
η1ψd
Lm

+ η2id + iqLm
θ̇

diqLm

dt
= − (η1 + η2) iqLm

+ η2iq + idLm
θ̇

did
dt

= − (Rsη3 + η5) id − η1η3ψd + (η5 + η1η3Lm) idLm
+ η3vd + iq θ̇

diq
dt

= − (Rsη3 + η5) iq + (η5 + η1η3Lm) iqLm
+ η3vq − idθ̇ (23)

The control problem is to force the rotor angular velocity ω and the square of the rotor flux
modulus ψm = ψ2

α + ψ2
β to track some desired references ωr and ψm,r, ensuring at the same

time load torque rejection. The control problem will be solved in a subsequent subsection by
means of a super-twisting sliding mode controller.

4.2.1 Optimal rotor flux calculation
The copper and core losses are obtained by the corresponding resistances and currents.
Therefore, the power lost in copper and core are expressed as follows:

PL =
3
2
Rs

(
i2d,s + i2q,s

)
+
3
2
Rr

(
i2d,r + i2q,r

)
+
3
2
Rc

(
i2d,Rc + i2q,Rc

)

where id,r and iq,r are the currents flowing through the rotor, id,Rc and iq,Rc are the currents
flowing through the resistance that represents the core. Since PL is a positive-definite function
can be considered as a cost function and then to be minimized with any desired variables, in
this case the most suitable is the rotor flux, i. e.,

∂PL

∂ψd
= 0.

The resulting rotor flux component is given of the following form

ψd,o =

(
RrLm

Rr + Rc
+

RcLr
Rr + Rc

)
idLm

− Rc (Lr− Lm) id
Rr +Rc

4.3 Control design
In order to solve the posed control problem using the super-twisting sliding mode approach,
we first derive the expression of the tracking error dynamics z1 = ω − ωr, z2 = ψm − ψd,o
which are the output which we want to force to zero. The error tracking dynamic for the rotor
velocity results as

ż1 = η0ψdiq − Tl
J
− ω̇r. (24)
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Proposing a desired dynamic for z1 of the following form

ż1 = η0ψdiq − Tl
J
− ω̇r = k1z1

one can calculate iq as a reference signal, i. e., iqr

iqr =

(
k1z1 + Tl

J + ω̇r

)

η0ψd
(25)

in order to force the current component iq to track its reference current, one defines the
following trackng error

ξ2 = iq − iqr (26)

and tanking the derivative of this error

ξ̇2 = φq + η3vq. (27)

where
φq = − (Rsη3 + η5) iq + (η5 + η1η3Lm) iqLm

− id θ̇ψ − ˙iqr

is considered to be a bounded unknown perturbation term, i.e., |φq| ≤ δq with δq > 0. The
control law is proposed of the following form:

vq = (−ρq,1

√
|ξ2|sign(ξ2) + νq)/η3

ν̇q = −ρq,2sign(ξ2), (28)

and the system (27) closed-loop by control (28) results in

ξ̇2 = −ρq,1

√
|ξ2|sign(ξ2) + νq + φq

ν̇q = −ρq,2sign(ξ2), (29)

where the controller gains ρq,1 and ρq,2 are determined in a similar fashion to procedure
outlined in the previous section. Now, from (26) one can write iq as follows

iq = ξ2 + iqr

and when substituting it along with (25) in (24) yields to

ż1 = k1z1 + η0ψdξ2.

Finally, collecting the equations
ż1 = k1z1 + η0ψdξ2

ξ̇2 = −ρq,1

√
|ξ2|sign(ξ2) + νq + φq

ν̇q = −ρq,2sign(ξ2).

When the sliding mode occurs, i.e., ξ2 = 0, the sliding mode dynamic results as:

ż1 = k1z1
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and that with a proper choice of k1, one can lead to z1 = 0.
Let us consider the second output z2, where its dynamic results as follows:

ż2 = −η4ψd + η4LmidLm
− ˙ψdr, (30)

note that the relative degree for z2 is three, therefore in order to cope with the relative degree
of z1, one proposes the following desired dynamic for z2

ż2 = −η4ψd + η4LmidLm
− ˙ψdr = k2z2 + z3

where the new variable z3 is calculated as:

z3 = −η4ψd + η4LmidLm
− ˙ψdr − k2z2.

Taking the derivative of z3 and assigning a desired dynamic

ż3 = idLm

(
−η4

2Lm − η4η1Lm − η4η2Lm − k2η4Lm

)
+ ψd

(
η4

2 + η4η1 + k2η4

)

+ η4η2Lmid + η4LmiqLmθ̇ψ − ψ̈dr + k2 ˙ψdr = k3z3 (31)

then, one can calculate id as a reference current, i. e., idr

idr =
k3z3 − idLm

(−η4
2Lm − η4η1Lm − η4η2Lm − k2η4Lm

)− ψd
(
η4

2 + η4η1 + k2η4
)

η4η2Lm

+
−η4LmiqLmθ̇ψ + ψ̈dr − k2 ˙ψdr

η4η2Lm
. (32)

Defining the tracking error for the current d component

ξ1 = id − idr (33)

and by taking its derivative, i. e.,
ξ̇1 = φd + η3vd (34)

where
φd = − (Rsη3 + η5) id − η1η3ψd + (η5 + η1η3Lm) idLm

+ iq θ̇ψ − ˙idr

is considered to be a bounded unknown perturbation term, i.e., |φd| ≤ δd with δd > 0. The
control law is proposed of the following form:

vd = (−ρd,1

√
|ξ1|sign(ξ1) + νd)/η3

ν̇d = −ρd,2sign(ξ1), (35)

and the system (34) closed-loop by control (35) results in

ξ̇1 = −ρd,1

√
|ξ1|sign(ξ1) + νd + φd

ν̇d = −ρd,2sign(ξ1), (36)

where the controller gains ρd,1 and ρd,2 are determined in a similar fashion to procedure
outlined in the previous section. Now, from (33) one can write

id = ξ1 + idr
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and replacing it in (31) along with (32) yields to

ż3 = k3z3 + η4η2Lmξ1.

Finally, collecting the equations
ż2 = k2z2 + z3

ż3 = k3z3 + η4η2Lmξ1

ξ̇1 = −ρd,1

√
|ξ1|sign(ξ1) + νd + φd

ν̇d = −ρd,2sign(ξ1).

When the sliding mode occurs, i.e., ξ1 = 0, the closed-loop channel reduces its order:

ż2 = k2z2 + z3

ż3 = k3z3
one can see that the determination of k2, k3, is easily achieved in order to lead to z2 = 0.

4.4 Observer design
The first problem with the control strategy here developed is that the measurements of the
rotor fluxes and magnetization currents are not possible. This problem is solved using an
sliding mode observer. The second problem concerns the estimation of the load torque, where
a classical Luemberger observer is designed.
The proposed sliding mode observer for rotor fluxes and magnetization currents is proposed
based on (22) as follows:

dψ̂α

dt
= −η4ψ̂α − Npωψ̂β + η4Lmîα,Lm + ρανα

dψ̂β

dt
= −η4ψ̂β + Npωψ̂α + η4Lmîβ,Lm + ρβνβ

dîα,Lm
dt

= −(η1 + η2)îα,Lm +
η1
Lm

ψ̂α + η2iα + λανα

dîβ,Lm
dt

= −(η1 + η2)îβ,Lm +
η1
Lm

ψ̂β + η2iβ + λβνβ

dîα
dt

= −(Rsη3 + η5)îα − η1η3ψ̂α

+ (η5 + η1η3Lm)îα,Lm + η3vα + να

dîβ
dt

= −(Rsη3 + η5)îβ − η1η3ψ̂β

+ (η5 + η1η3Lm)îβ,Lm + η3vβ + νβ

where ρα, ρβ, λα and λβ are the observer design parameters, and να and νβ are the injected
inputs to the observer that will be defined in the following lines. Now one defines the
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estimation errors, ψ̃α = ψα − ψ̂α, ψ̃β = ψβ − ψ̂β, ĩα,Lm = iα,Lm − îα,Lm, ĩβ,Lm = iβ,Lm − îβ,Lm,
ĩα = iα − îα and ĩβ = iβ − îβ, whose dynamics can be expressed as:

dψ̃α

dt
= −η4ψ̃α − Npωψ̃β + η4Lmĩα,Lm− ρανα

dψ̃β

dt
= −η4ψ̃β + Npωψ̃α + η4Lmĩβ,Lm − ρβνβ

dĩα,Lm
dt

= −(η1 + η2)ĩα,Lm +
η1
Lm

ψ̃α − λανα

dĩβ,Lm
dt

= −(η1 + η2)ĩβ,Lm +
η1
Lm

ψ̃β − λβνβ

dĩα
dt

= −(Rsη3 + η5)ĩα − η1η3ψ̃α

+ (η5 + η1η3Lm)ĩα,Lm − να

dĩβ
dt

= −(Rsη3 + η5)ĩβ − η1η3ψ̃β

+ (η5 + η1η3Lm)ĩβ,Lm − νβ. (37)

Since the stator currents are measurable variables, one can choose the observer injection as
να = lαsign(ĩα) and νβ = lβsign(ĩβ). From the derivative of the following Lyapunov candidate
function Vo =

1
2 (ĩ

2
α + ĩ2β) along the trajectories of (37), one can easily determine the following

bounds, lα > |η1η3ψ̃α − (η5 + η1η3Lm)ĩα,Lm| and lβ > |η1η3ψ̃β − (η5 + η1η3Lm)ĩβ,Lm| that
guarantees the convergence of ĩα and ĩβ towards zero in finite time. When the sliding mode
occurs, i. e., ĩα = ĩβ = 0 one can calculate the equivalent control for the injected signals

from ˙̃iα = 0 and ˙̃iβ = 0 as να,eq = −η1η3ψ̃α + (η5 + η1η3Lm)ĩα,Lm, νβ,eq = −η1η3ψ̃β + (η5 +

η1η3Lm)ĩβ,Lm, then, the sliding mode dynamic can be obtained by replacing the calculated
equivalent controls, resulting in a linear time-variant dynamic system, ε̇ = Ao(ω)ε, where

ε =
(
ψ̃α ψ̃β ĩα,Lm ĩβ,Lm

)T ,
Ao =

(
Ao,11 Ao,12
Ao,21 Ao,22

)

with

Ao,11 =

(
ραη1η3 − η4 −Npω

Npω ρβη1η3 − η4

)
,

Ao,12 =

(
η4Lm − ραγ 0

0 η4Lm − ρβγ

)
,

Ao,21 =

(
η1
Lm

+ λαη1η3 0
0 η1

Lm
+ λβη1η3

)
,

Ao,22 =

(−η1 − η2 − λαγ 0
0 −η1 − η2 − λβγ

)
,

γ = η5 + η1η3Lm.

251Super-Twisting Sliding Mode in Motion Control Systems



16 Sliding Mode Control

In order to choose the design parameters, a polynomial with desired poles is proposed,
pd(s) = (s − p1)(s − p2)(s − p3)(s − p4), such that, the coefficients of the characteristic
equation that results from the matrix Ao are equalized with the ones related with pd(s), i. e.,
det(sI − Ao) = pd(s), moreover, one can assume that the rotor velocity is constant, therefore
the design parameters are easily determined. This will guarantee that limt→∞ε(t) = 0.
For the load torque estimation we consider that it is slowly varying, so one can assume it
is constant, i. e., Ṫl = 0. This fact can be valid since the electric dynamic of the motor is
faster than the mechanical one. Therefore, one proposes the following observer based on
rotor velocity and stator current measurements

dω̂

dt
= η0(ψ̂αiβ − ψ̂βiα)− T̂l

J
+ l1(ω − ω̂)

dT̂l
dt

= l2(ω − ω̂).

Defining the estimation errors as eω = ω − ω̂ and eTl = Tl − T̂l one can determine the
estimation error dynamic

(
ėω

ėTl

)
=

(
−l1 − 1

J
−l2 0

)(
eω

eTl

)
+ η0

(
ψ̃αiβ − ψ̃βiα

0

)
. (38)

When the estimation errors for the rotor fluxes in (37) are zero, equation (38) reduces to

(
ėω

ėTl

)
=

(
−l1 − 1

J
−l2 0

)(
eω

eTl

)
(39)

where l1 and l2 can easily be determined in order to yield to limt→∞eω(t) = 0 and
limt→∞eTl(t) = 0.

4.5 Simulations
In this section we verify the performance of the proposed control scheme bymeans of numeric
simulations.
We consider an induction motor with the following nominal parameters: Rr = 10.1 Ω, Rs =
14 Ω, Rc = 1 kΩ, Ls = 400 × 10−3 H, Lr = 412.8 × 10−3 H, Lm = 377 × 10−3 H, J =
0.01 Kgm2.
Hence, η1 = 27, 932.96 Ω/H, η2 = 2, 652.51 Ω/H, η3 = 43.47 H−1, η4 = 282.12 Ω/H and
η5 = 43, 478.26 Ω/H.
A load torque Tl of 5 Nm, with decrements of 1 Nm and 2 Nm at 8 s and 12 s respectively, has
been considered in simulations. The reference velocity signal increases from 0 to 188.5 rad/s
in the first 5 s and then remains constant, while the rotor flux modulus reference signal is
directly taken from the calculated optimal flux.
A good tracking performance by the proposed controller can be appreciated in Figures 3 and
4. In Fig. 5 the power lost in copper and core is shown in the case of using the optimal flux
modulus and the predicted open-loop steady state values in the cases of considering or not
the core, this is a common practice when dealing with the control of the rotor flux in induction
motors. From this figure one can observe a low power lost in copper and core when using the
optimal flux, also one can note in Fig. 4 that the less is the load torque the lower is the flux
level and as a consequence the power lost is reduced.
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Fig. 3. Closed-loop velocity tracking of the proposed controller.
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Fig. 4. Closed-loop optimal flux tracking of the proposed controller.

5. Conclusions

In this chapter the super-twisting algorithm and its application to motion control systems is
shown. An under-actuated robotic system known as the Pendubot was closed-loop with a
super-twisting controller. The procedure can easily be generalized to such type of motion
systems. For that, one must consider the following generic steps: find the steady state for all
states, then, based on the dynamic of the steady state errors one proposes an sliding function
that linearly stabilizes the sliding mode dynamic. For the induction motor motion control,
the (d, q) reference frame allows to decouple the control problem simplifying the control
design. In each channel, a cascade strategy of defining first the output tracking error and
then a desired current that shapes the dynamic of such output. Therefore, the sliding surface
is simply chosen as a deviation of the current and its desired current. This strategy can be
applied to all type of electricmotors. In both scenarios, the super-twisting algorithm facilitates
the motion control design and eliminates the chattering phenomenon at the outputs.
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Fig. 5. Comparison of the power lost in copper and core using the optimal flux modulus, and
the steady-state open-loop values for the flux modulus predicted by the classical fifth-order
model and the seventh-order model here presented.
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1. Introduction

Trajectory control problem arises if the manipulator is required to follow a desired trajectory.
In the robotic literature mainly two approaches are used: computer torque (inverse dynamic
control) and sliding mode control Sciavicco & Siciliano (1996); Slotine & Li (1991). The system
under inverse dynamics controller is linear and decoupled with respect to the newly obtained
input. In robotics literature very popular is the sliding mode method described by Slotine &
Li (1987; 1991). The approach differs from the previous one because even if the parameters
are exactly known, the manipulator equations of motion are not linearized by the control
law. The sliding mode control strategies are used in the manipulator joint space as well
as in its operational space Sciavicco & Siciliano (1996); Slotine & Li (1987; 1991). From the
practical point of view to track the position of the end-effector of the manipulator is more
convenient than the joint position tracking because the task is realized directly. The motion
control problem in the manipulator joint space and the operational space is investigated also
in newer references Kelly & Moreno (2005); Moreno & Kelly (2003); Moreno et al. (2003);
Moreno-Valenzuela & Kelly (2006). Sometimes also a friction model is taken into account,
e.g. Moreno et al. (2003); Moreno-Valenzuela & Kelly (2006). One of known applications of
the sliding mode approach allows one to control a shape Mochiyama et al. (1999). In order
to design various versions of control laws strict Lyapunov functions for a class of global
regulators for robot manipulators are introduced Santibanez & Kelly (1997); Spong (1992) or
in terms of the IQV also in Herman (2009b).
Classical description leads to obtaining second-order nonlinear differential equations of
motion. The equations involve both generalized position vector and velocity vector which
represent a joint space of the manipulator. However, for control purposes first-order equations
of motion with diagonal mass matrix seemmore convenient than the second-order equations.
It is possible to consider the dynamics of mechanical systems using quasi-velocities and
differential geometry Kwatny & Blankenship (2000). The obtained first-order equations of
motion are the Poincaré’s form of the Lagrange’s equations. One of useful solutions which
leads to the diagonal or the unit inertia matrix is introducing so called inertial quasi-velocities
(IQV). There exist several methods which enable such decomposition (e.g.Hurtado (2004); Jain
& Rodriguez (1995); Junkins & Schaub (1997); Loduha & Ravani (1995); Sovinsky et al. (2005)).
The method presented in Hurtado (2004) is associated with the Cholesky decomposition
Sovinsky et al. (2005). In the method described by Jain & Rodriguez (1995) the normalized
quasi-velocities (NQV) and the unnormalized quasi-velocities (UQV) were introduced. The
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next method Junkins & Schaub (1997) is based on the eigenvalues and eigenvectors calculation
of the inertia matrix. The Loduha and Ravani offer the generalized velocity components
(GVC) which can be related to the modified Kane’s equations given e.g. in Kane & Levinson
(1983). Finally, also the normalized generalized velocity components (NGVC) are considered
in references Herman (2005b; 2006). The NGVC are a useful form of the GVC.
The key idea of the paper is a survey of selected non-adaptive sliding mode controllers
expressed in terms of the inertial quasi-velocities (IQV). The IQV mean that the
quasi-velocities contain the kinematic and dynamic parameters of a rigid manipulator as well
as its geometrical dimensions. In spite that there exist several IQV, only some of them are
considered here, namely: the GVC described in Loduha & Ravani (1995), the NQV given in
Jain & Rodriguez (1995), and the NGVC presented in Herman (2005b; 2006). It is because these
kind of IQV very well explain the idea of non-adaptive sliding mode control in terms of the
quasi-velocities. The second aim is to point at some advantages which offers the sliding mode
control scheme in using the IQV. It is also shown which benefits are observable if the system
under the proposed control law is considered. One of advantages arises from the fact that
the IQV are decoupled in the kinetic energy sense and they lead to decoupling of the inertia
matrix of the manipulator. Consequently, the inertia which takes into account also dynamical
coupling can be determined. Moreover, some disadvantages of the IQV control approach are
indicated. The third objective is to show that the sliding mode controllers are realized both
in the manipulator joint space and the operational space. Additionally, it is possible to take
into consideration disturbances (here represented by a viscous damping function) which, in
prospect, it allows one to extend the results for use of various friction models.
The paper is organized as follows. Section 2 gives diagonalized equations ofmotion in terms of
the IQV. In Section 3 the sliding mode controllers in the joint space of a manipulator as well as
in its operational space are presented. Simulation results comparing performance between the
new control schemes and the classical controllers for two models of rigid serial manipulator,
namely 3 D.O.F. spatial DDArm robot and Yasukawa-like robot are contained in Section 4. The
last section offers conclusions and future research.

2. Dynamics in terms of inertial quasi-velocities

2.1 Notation
θ, θ̇, θ̈ ∈ RN - vectors of generalized positions, velocities, and accelerations, respectively,
N - number of degrees of freedom,
M(θ) ∈ RN×N - system inertia matrix,
C(θ, θ̇)θ̇ ∈ RN - vector of Coriolis and centrifugal forces in classical equations of motion,
G(θ) ∈ RN - vector of gravitational forces in classical equations of motion,
f (θ̇) = Fθ̇ ∈ RN - vector of forces due to friction (viscous damping) which depends on
the joint velocity vector θ̇ where F = diag {F1, . . . , FN } is a positive definite diagonal matrix
containing the damping coefficients for all joints,
Q ∈ RN - vector of generalized forces,
N ∈ RN×N - diagonal system inertia matrix in terms of the GVC,
u, u̇ ∈ RN - vector of generalized velocity components and its time derivative, respectively,
Υ = Υ(θ) ∈ RN×N - upper triangular transformation matrix between the velocity vector θ̇
and the generalized velocity components vector u Loduha & Ravani (1995),
Υ̇(θ) ∈ RN×N - time derivative of the matrix Υ(θ),
Cu(θ, u)u ∈ RN - vector of Coriolis and centrifugal forces in terms of the GVC,
Gu(θ) ∈ RN - vector of gravitational forces in terms of the GVC,
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fu(θ, θ̇) ∈ RN - vector of friction damping forces in terms of the GVC,
π ∈ RN - vector of quasi-forces in terms of the GVC,
ϑ, ϑ̇ ∈ RN - vector of quasi-velocities, i.e. the NGVC and its time derivative, respectively,
Φ = Φ(θ) ∈ RN×N - upper triangular velocity transformation matrix in terms of the NGVC,
Φ̇(θ) ∈ RN×N - time derivative of the matrix Φ(θ),
Cϑ(θ, ϑ)ϑ ∈ RN - vector of Coriolis and centrifugal forces in terms of the NGVC,
Gϑ(θ) ∈ RN - vector of gravitational forces in terms of the NGVC,
fϑ(θ, θ̇) ∈ RN - vector of friction damping forces in terms of the NGVC,
� ∈ RN - vector of quasi-forces in terms of NGVC,
ν ∈ RN vector of normalized quasi-velocities,
Cν(θ, ν)ν ∈ RN vector of Coriolis and centrifugal forces in the NQV,
Gν(θ) ∈ RN vector of gravitational forces in the NQV,
m = m(θ) ∈ RN×N spatial operator (matrix) - "square root" of the inertia matrix M(θ),
ṁ(θ) ∈ RN×N time derivative of the matrix m(θ),
ε ∈ RN vector of normalized quasi-forces (in terms of the NQV),
D ∈ RN×N articulated inertia about joint axes matrix Jain & Rodriguez (1995),
(.)T - transpose operation.

2.2 Equations of motion
Recall that the classical equations of motion for a manipulator can be written in the following
form Sciavicco & Siciliano (1996); Slotine & Li (1987; 1991):

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = Q. (1)

In terms of the IQV the equations of motion depend on the used decomposition of the inertia
matrix M(θ). The first of here considered decomposition methods is based on the generalized
velocity components (GVC) Loduha & Ravani (1995). In this method M(θ) = Υ−TNΥ−1. The
equations were proposed by Loduha & Ravani (1995).

Nu̇ + Cu(θ, u)u+ Gu(θ) = π, (2)

θ̇ = Υ(θ)u, (3)

where matrices and vectors are given as follows:

N = ΥTM(θ)Υ, u̇ = Υ−1θ̈ + Υ̇−1θ̇, (4)

Cu(θ, u) = ΥT[M(θ)Υ̇ + C(θ, θ̇)Υ], (5)

Gu(θ) = ΥTG(θ), (6)

π = ΥTQ. (7)

Equations (2) and (3) provide a closed set of first-order differential equations for manipulator
in terms of GVC.
In the second considered method assuming the inertia matrix decomposition method given
in Jain & Rodriguez (1995), which leads to the NQV and with M(θ) = mmT, we obtain the
following equations of motion:

ν̇ + Cν(θ, ν)ν + Gν(θ) = ε, (8)

ν = mT(θ)θ̇, (9)
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where

ν̇ = ṁT(θ)θ̇ +mT(θ)θ̈, (10)

Cν(θ, ν) = [m−1(θ)Cν(θ, θ̇) − ṁT(θ)](m−1(θ))T, (11)

Gν(θ) = m−1(θ)G(θ), (12)

ε = m−1(θ)Q. (13)

As results from Jain & Rodriguez (1995) we have also the relationship

νTCν(θ, ν)ν = 0. (14)

However, we can prove this property. The time derivative of the mass matrix is Ṁ = ṁmT +
mṁT . Using (9), (11), and taking into account the above assumption one can calculate:

νTCν(θ, ν)ν = νT[m−1Cν(θ, θ̇) − ṁT](mT)−1ν = θ̇TCν(θ, θ̇)θ̇ − θ̇TmṁT θ̇ = θ̇T
1
2
Ṁθ̇

−θ̇TmṁT θ̇ = θ̇T[
1
2
(ṁmT −mṁT)]θ̇ = νT

1
2
m−1(ṁmT −mṁT)(m−1)Tν = 0, (15)

because the matrix (ṁmT −mṁT) is a skew symmetric one. From the above derivation arises
that Cν(θ, ν) = 1

2m
−1(ṁmT −mṁT)(m−1)T.

The third decompositionmethod Herman (2005b; 2006) is an extension of the method Loduha
& Ravani (1995) and it is based on the NGVC with M(θ) = ΦTΦ. Hence the two first-order
equations (the diagonalized equation of motion and the velocity transformation equation) for
rigid manipulator can be rewritten in the form:

ϑ̇ + Cϑ(θ, ϑ)ϑ + Gϑ(θ) = �, (16)

ϑ = Φ(θ)θ̇, (17)

where

ϑ̇ = Φθ̈ + Φ̇θ̇, Φ = N
1
2 Υ−1, (18)

Cϑ(θ, ϑ) = [(ΦT)−1C(θ, θ̇) − Φ̇]Φ−1, (19)

Gϑ(θ) = (ΦT)−1G(θ), (20)

� = (ΦT)−1Q. (21)

Remark 1. If the viscous damping forces are taken into account then we have the following
classical equations of motion, and e.g. the equations in terms of the GVC and the NGVC:

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) + f (θ̇) = Q, (22)

Nu̇ + Cu(θ, u)u+ Gu(θ) + fu(θ, θ̇) = π, (23)

ϑ̇ + Cϑ(θ, ϑ)ϑ + Gϑ(θ) + fϑ(θ, θ̇) = �, (24)

where fu(θ, θ̇) = ΥT f (θ̇) and fϑ(θ, θ̇) = (ΦT)−1 f (θ̇).
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2.3 Other decomposition methods
The main problem concerning the transformed equations of motion is the selection method
for decomposition of the inertia matrix. There are various known methods for decomposition
of the inertia matrix to obtain a diagonal matrix or the identity matrix. For this purpose the
Cholesky factorization (which can be referred to Hurtado (2004); Matlab (1996); Sovinsky
et al. (2005) or decomposition into the eigenvalues and the eigenvectors considered in
Junkins & Schaub (1997); Matlab (1996). Moreover, using e.g. the Schur decomposition or the
singular value decomposition Matlab (1996) we are able to decompose the inertia matrix. The
eigenvalue and eigenvector based decomposition method, the Schur decomposition method
and the singular value decomposition method for a symmetric and positive definite matrix
M lead to obtaining a transformation matrix which has, in general, all nonzero elements.
This fact complicates a possible controller design because the number of necessary numerical
operation increase and each variable. However, sometimes the use of the appropriate method
(not very much time consuming) may decide about performance of a non-adaptive sliding
mode controller.

2.4 Some useful properties of IQV
Some advantages arising from the description of motion in terms of the IQV concern an
insight into the manipulator dynamics. The kinetic energy of the manipulator is expressed
as (compare Herman (2005a), Jain & Rodriguez (1995), and Herman (2005b), respectively):

K(θ, u) =
1
2

θ̇TM(θ)θ̇ =
1
2
uTNu =

1
2

N
∑
k=1

Nku
2
k =

N
∑
k=1

Kk, (25)

K(θ, ν) =
1
2

θ̇TM(θ)θ̇ =
1
2

θ̇Tm(θ)mT(θ)θ̇ =
1
2

νTν =
1
2

N
∑
k=1

ν2k =
N
∑
k=1

Kk, (26)

K(θ, ϑ) =
1
2

θ̇TM(θ)θ̇ =
1
2

θ̇TΦTΦθ̇ =
1
2

ϑTϑ =
1
2

N
∑
k=1

ϑ2k =
N
∑
k=1

Kk. (27)

The above given formulas allow one to determine the part of energy corresponding to each
inertial quasi-velocity individually (and also concerning the appropriate link taking into
account the dynamical coupling).
Additionally, it is possible to calculate elements of thematrix N (GVC and NGVC) orD (NQV)
- see Notation - which can be understood as a rotational inertia about each joint axis or a mass
shifted along the translational joint. Using the equation (1) this information is inaccessible.

3. Sliding mode controllers using inertial quasi-velocities

3.1 Control algorithms in joint space
In classical form the sliding mode controller in joint space of a manipulator can be expressed
as follows Sciavicco & Siciliano (1996); Slotine & Li (1991):

Q = M(θ)θ̈r + C(θ, θ̇)θ̇r + G(θ) + kDs. (28)

The used symbols denote: θ̈r = θ̈d + Λ ˙̃θ, θ̇r = θ̇d + Λθ̃ with θ̈d as the desired joint acceleration
vector and θ̃ = θd − θ, ˙̃θ = θ̇d − θ̇ the joint velocities error, and the joint error between the
desired and actual posture, respectively. The matrix Λ is constant and it has eigenvalues
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strictly in the right-half complex plane and kD is a constant positive definite control gain
matrix. The vector s is defined as s = ˙̃θ + Λθ̃.
In terms of the GVC introduced originally by Loduha & Ravani (1995) the non-adaptive
sliding mode controller can be presented in the given below proposition. Recall also that from
(3) arises the relationship u = Υ−1θ̇ (the matrix Υ is invertible) and the time derivative of
θ̇ = Υu is θ̈ = Υ̇u + Υu̇. It is assumed the following sliding surface of the objective point

Υ−1( ˙̃θ + Λθ̃) = 0. (29)

Proposition 1. Consider the system (2) and (3) together with the controller in terms of the
GVC Herman (2005a)

π = Nu̇r + C(θ, u)ur + Gu(θ) + kDsu + ΥTkP θ̃, (30)

where

ur = Υ−1θ̇r , u̇r = Υ−1(θ̈r − Υ̇ur), (31)

su = ur − u = Υ−1( ˙̃θ + Λθ̃), (32)

with positive definite kD , kP, Λ control gain matrices, and θ̈r = θ̈d + Λ ˙̃θ, θ̇r = θ̇d + Λθ̃, θ̃ =
θd − θ, ˙̃θ = θ̇d − θ̇. Using the definition (29) and if the signals θ̇d, θ̇d, θ̈d are bounded, then the
equilibrium point [sTu , θ̃T ]T = 0 is globally asymptotically stable in the sense of Lyapunov. The
joint forces (which arises from (7)) are given as Q = (ΥT)−1π.
Proof Herman (2005a). The closed loop system with control (30) using su is given as follows

Nu̇ + C(θ,u)u + Gu(θ) = Nu̇r + C(θ,u)ur + Gu(θ) + kDsu + ΥTkP θ̃, (33)

what leads to
Nṡu + [C(θ, u) + kD ]su + ΥTkP θ̃ = 0. (34)

As a Lyapunov function candidate consider the following expression

L(su, θ̃) =
1
2
sTu Nsu +

1
2

θ̃TkP θ̃. (35)

The time derivative of N equals (where M = M(θ))

Ṅ =
d
dt

(ΥTMΥ) = Υ̇TMΥ + ΥTṀΥ + ΥTMΥ̇. (36)

Next we calculate the time derivative of (35), use (2)-(7), (34), (36), and the property, e.g. Kelly
& Moreno (2005); Slotine & Li (1991)

qT
[
1
2
Ṁ(θ) − C(θ, θ̇)

]
q = 0, ∀q, θ, θ̇ ∈ RN . (37)
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After transposition of (3) one can obtain (L̇ = dL
dt ):

L̇(su, θ̃) = sTu Nṡu +
1
2
sTu Ṅsu + ˙̃θTkP θ̃ = sTu [−C(θ,u)su − kDsu +

1
2
Ṅsu] − sTuΥTkP θ̃

+ ˙̃θTkP θ̃ = sTu [−ΥTMΥ̇su − ΥTC(θ, θ̇)Υsu − kDsu +
1
2
(Υ̇TMΥ + ΥTṀΥ

+ΥTMΥ̇)su] − sTuΥTkP θ̃ + ˙̃θTkP θ̃ = −sTukDsu + sTu [
1
2

ΥTMΥ̇ − ΥTMΥ̇ +
1
2

Υ̇TMΥ

+ΥT(
1
2
Ṁ− C(θ, θ̇))Υ]su − sTuΥTkP θ̃ + ˙̃θTkP θ̃ = −sTu kDsu +

1
2
sTu (Υ̇TMΥ − ΥTMΥ̇)su

−sTuΥTkP θ̃ + ˙̃θTkP θ̃ = −sTu kDsu − sTuΥTkP θ̃ + ˙̃θTkP θ̃. (38)

Using (32) one can write:

L̇(su, θ̃) = −sTukDsu − ( ˙̃θT + θ̃TΛT)kP θ̃ + ˙̃θTkP θ̃ = −sTukDsu − θ̃TΛTkP θ̃. (39)

Assumption that kP = kDΛ leads to

L̇(su, θ̃) = −sTu kDsu − θ̃TΛTkDΛθ̃. (40)

The time derivative L̇ (40) is a negative semidefinite function. Invoking Lyapunov direct
method Khalil (1996); Slotine & Li (1991) the above proof is completed. Therefore, [sTu , θ̃T]T = 0
is globally asymptotically stable in the sense of Lyapunov.
Remark 2. The control law (30) can be also simplified as follows: π = Nu̇r + C(θ, u)ur +
Gu(θ) + kDsu. The proof, in such case, can be given basing on the Barbalat’s Lemma Slotine &
Li (1991). However, the performance of the simplified control algorithm is worse than if the
controller (30) is used because of absence the additional position error regulation term.
The analogous tracking control problem can be considered in terms of the NQV. Consider the
following surface:

mT( ˙̃θ + Λθ̃) = 0, (41)

which is also a sliding surface of the objective point (the matrix mT is invertible Jain &
Rodriguez (1995)).
Proposition 2. Consider the system (8) and (9) together with the controller in terms of the
NQV

ε = ν̇r + Cν(θ, ν)νr + Gν(θ) + kDsν + m−1kP θ̃, (42)

where

νr = mT θ̇r, ν̇r = mT(θ̈r − (ṁT)−1νr), (43)

sν = νr − ν = mT( ˙̃θ + Λθ̃), (44)

with positive definite kD , kP, Λ control gain matrices, and θ̈r = θ̈d + Λ ˙̃θ, θ̇r = θ̇d + Λθ̃, θ̃ =
θd − θ, ˙̃θ = θ̇d − θ̇. Using the definition (41) and if the signals θ̇d, θ̇d, θ̈d are bounded, then the
equilibrium point [sTν , θ̃T ]T = 0 is globally asymptotically stable in the sense of Lyapunov. The
input forces vector of manipulator Q = mε arises from (13).
Proof. The closed loop system with control (42) using sν is given as follows:

ν̇ + Cν(θ, ν)ν + Gν(θ) = ν̇r + Cν(θ, ν)νr + Gν(θ) + kDsν + m−1kP θ̃, (45)
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which, using (44), leads to equation:

ṡν + [Cν(θ, ν) + kD]sν + m−1kP θ̃ = 0. (46)

As a Lyapunov function candidate consider the following expression:

L =
1
2
sTν sν +

1
2

θ̃TkP θ̃. (47)

Next, calculating the time derivative of (47), using (46), definition (44) and property (14) one
obtains:

L̇ = sTν ṡν + ˙̃θTkP θ̃ = sTν (−Cν(θ, ν)sν − kDsν −m−1kP θ̃) + ˙̃θTkP θ̃

= −sTν Cν(θ, ν)sν − sTν kDsν − sTν m
−1kP θ̃ + ˙̃θTkP θ̃ = −sTν kDsν − ( ˙̃θT + θ̃TΛT)kP θ̃

+ ˙̃θTkP θ̃ = −sTν kDsν − θ̃TΛTkP θ̃. (48)

Choosing kP = kDΛ yields

L̇ = −sTν kDsν − θ̃TΛTkDΛθ̃. (49)

One can observe that L̇ (49) is a negative semidefinite function. Invoking Lyapunov direct
method Khalil (1996); Slotine & Li (1991) the above proof is completed. Therefore, [sTν , θ̃T]T = 0
is globally asymptotically stable in the sense of Lyapunov.

3.2 Control algorithms in operational space
Consider the sliding mode controller in the workspace of a rigid serial manipulator if the
viscous damping is taken into account. In classical case the controller related to (22) can be
described as follows Sciavicco & Siciliano (1996); Slotine & Li (1987):

Q = M(θ)θ̈r + C(θ, θ̇)θ̇r + G(θ) + Fθ̇r + kDs (50)

where in order to extend the joint space controller to task space it is necessary to introduce:

θ̇r = J−1A (θ) [ẋd + Λ(xd − x)] (51)

θ̈r = J−1A (θ)
{
[ẍd + Λ(ẋd − ẋ)] − J̇A θ̇r

}
(52)

s = θ̇r − θ̇ = J−1A (θ)[ẋd − JA(θ)θ̇ + Λ(xd − x)]. (53)

In the above equations the xd, ẋd and ẍd are the desired end-effector posture (position
and orientation), velocity and acceleration, respectively. Moreover, x and ẋ denote actual
end-effector posture and velocity whereas θr , θ̇r and θ̈r are reference joint position, velocity
and acceleration Slotine & Li (1987). The matrix kD is positive definite whereas the matrix Λ
is a diagonal (constant) matrix whose eigenvalues are strictly in the right-half complex plane.
The used symbol JA means the analytical Jacobian because the end-effector velocity can be
defined by the kinematic relationship ẋ = JA(θ)θ̇ Sciavicco & Siciliano (1996). In general
J−1A (θ) have to be replaced by the right pseudo-inverse of JA i.e. J†A = JTA(JA JTA)−1. Using
the controller (50) the sliding surface

˙̃x + Λx̃ = 0, (54)

where ˙̃x = ẋd − ẋ and x̃ = xd − x is reached which in turn implies that x̃ → 0 as t → 0.
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Proposition 3 Herman (2009a). Consider the system (23) and (3) together with the controller
in terms of the GVC

π = Nu̇r + Cu(θ, u)ur + Gu(θ) + ΥTFΥur + kDsu + JTAu(θ)kPx̃, (55)

where

ur = J−1Au(θ) [ẋd + Λ(xd − x)] , (56)

u̇r = J−1Au(θ)
{
[ẍd + Λ(ẋd − ẋ)] − J̇Au(θ)ur

}
, (57)

su = ur − u = J−1Au(θ)[ẋd − JAu(θ)u + Λ(xd − x)] = J−1Au(θ)( ˙̃x + Λx̃), (58)

with positive definite kD , kP, Λ control gain matrices. Using the definition (54) (assuming that
J−1Au(θ) is a nonsingular matrix) and if the signals xd, ẋd, ẍd are bounded then the end-effector
posture (position and orientation) error x̃ = xd − x and the velocity error ˙̃x = ẋd − ẋ are
convergent to zero and the equilibrium point [sTu , x̃T]T = 0 is globally exponentially stable.
The joint forces (which arises from (7)) are given as Q = (ΥT)−1π.
The end-effector velocity can be defined by ẋ = JA(θ)θ̇ Sciavicco & Siciliano (1996) as well as
by ẋ = JAu(θ)u. Comparing both relationships and taking into account (3) we conclude that
JAu(θ) = JA(θ)Υ. Besides, in general case instead of J−1Au = J−1Au(θ) the right pseudo-inverse
matrix J†Au = JTAu(JAu JTAu)

−1 should be used. It is also assumed (basing on (3)) that θ̇r = Υur.
Proof can be found in Herman (2009a).
In terms of the NGVC we propose the following nonlinear controller.
Proposition 4Herman (2009c). Consider a system (16) and (17) together with the controller

� = ϑ̇r + Cϑ(θ, ϑ)ϑr + Gϑ(θ) + (ΦT)−1FΦ−1ϑr + kDsϑ + JTAϑ(θ)kPx̃, (59)

where

ϑr = J−1Aϑ(θ) [ẋd + Λ(xd − x)] , (60)

ϑ̇r = J−1Aϑ(θ)
{
[ẍd + Λ(ẋd − ẋ)] − J̇Aϑ(θ)ϑr

}
, (61)

sϑ = ϑr − ϑ = J−1Aϑ(θ) [ẋd − JAϑ(θ)ϑ + Λ(xd − x)] = J−1Aϑ(θ)( ˙̃x + Λx̃), (62)

with positive definite kD , kP, Λ control gain matrices. Using the definition (54) (assuming that
J−1Aϑ(θ) is a nonsingular matrix) and if the signals xd, ẋd, ẍd are bounded, then the end-effector
position error x̃ = xd − x and the velocity error ˙̃x = ẋd − ẋ are convergent to zero, and the
equilibrium point [sTϑ , x̃

T]T = 0 is globally exponentially stable. The joint forces (which arises
from (21)) are given as Q = ΦT�.
Proof (based on Herman (2009c)). The closed-loop system (16) and (17) together with the
controller (59) can be written as:

ϑ̇ + Cϑ(θ, ϑ)ϑ + Gϑ(θ) + (ΦT)−1FΦ−1ϑ

= ϑ̇r + Cϑ(θ, ϑ)ϑr + Gϑ(θ) + (ΦT)−1FΦ−1ϑr + kDsϑ + JTAϑkPx̃, (63)

what leads to
ṡϑ + [Cϑ(θ, ϑ) + kD + (ΦT)−1FΦ−1]sϑ + JTAϑkPx̃ = 0. (64)

The proposed the Lyapunov function candidate is assumed as follows:

L(sϑ, x̃) =
1
2
sTϑ sϑ +

1
2
x̃TkPx̃. (65)
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The time derivative of L(sϑ, x̃) along of the system trajectories (16) and (17) is given by:

L̇(sϑ, x̃) = sTϑ ṡϑ + ˙̃xTkPx̃ = sTϑ [−Cϑ − kD − (ΦT)−1FΦ−1]sϑ − sTϑ J
T
AϑkPx̃ + ˙̃xTkPx̃. (66)

Consider the term −sTϑCϑsϑ. Calculating the time derivative of the inertia matrix M = ΦTΦ
(see 2.2) one obtains Ṁ = d

dt (ΦTΦ) = Φ̇TΦ + ΦTΦ̇. Introducing sφ = Φ−1sϑ and using (19)
one gets:

−sTϑCϑsϑ = −sTϑ [(ΦT)−1C− Φ̇]Φ−1sϑ = sTφ(ΦTΦ̇ − C)sφ

= sTφ(
1
2

ΦTΦ̇ +
1
2

ΦTΦ̇ − C +
1
2

Φ̇TΦ − 1
2

Φ̇TΦ)sφ = sTφ

[
(
1
2
Ṁ− C) +

1
2
(ΦTΦ̇ − Φ̇TΦ)

]
sφ. (67)

Because the matrix ( 12 Ṁ − C) is skew-symmetric then we can use (37). Moreover, the matrix
(ΦTΦ̇ − Φ̇TΦ) is also skew-symmetric (see Herman (2009c)). Thus, one can write:

L̇(sϑ, x̃) = −sTϑ [kD + (ΦT)−1FΦ−1]sϑ − sTϑ J
T
AϑkPx̃ + ˙̃xTkPx̃. (68)

Using now (62) one obtains:

L̇(sϑ, x̃) = −sTϑ [kD + (ΦT)−1FΦ−1]sϑ − ( ˙̃xT + x̃TΛT)kPx̃ + ˙̃xTkPx̃

= −sTϑ [kD + (ΦT)−1FΦ−1]sϑ − x̃TΛTkPx̃. (69)

Assuming that kP = δΛ (where δ is a positive constant serving for the position error
regulation) we have:

L̇(sϑ, x̃) = −sTϑ [kD + (ΦT)−1FΦ−1]sϑ − x̃TδΛTΛx̃. (70)

As a result, one can write the above equation in the following form:

L̇(sϑ, x̃) = −
[
sϑ

x̃

]T [
kD + (ΦT)−1FΦ−1 0

0 δΛTΛ

]

︸ ︷︷ ︸
A

[
sϑ

x̃

]
. (71)

Note that the symmetric matrix A is positive definite. Thus, λm{A} > 0. Denoting now xs =
[sTϑ , x̃

T ]T one can write

L̇(t, xs) ≤ −λm{A}||xs||2 (72)

for all t ≥ 0 and xs ∈ R2N .
Therefore, basing on the Lyapunov direct method Khalil (1996); Slotine & Li (1991), the
conclusion that the state space origin of the system (16) and (17) together with the controller
(59)

lim
t→∞

[
sϑ(t)
x̃(t)

]
= 0 (73)

is globally exponentially convergent can be done.
The end-effector velocity is defined by ẋ = JA(θ)θ̇ Sciavicco & Siciliano (1996). Introducing
the analytical Jacobian in terms of the vector ϑ we can write the relationship ẋ = JAϑ(θ)ϑ.
Comparing ẋ from both relationships and taking into account Eq.(17) we conclude that
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JAϑ(θ) = JA(θ)Φ−1. Moreover, in general case, instead of J−1Aϑ = J−1Aϑ(θ) the right
pseudo-inverse matrix J†Aϑ = JTAϑ(JAϑ JTAϑ)−1 should be used. Based on Eq.(17) it is also
assumed that ϑr = Φθ̇r. Kinematics singularities are the same as in JA(θ) because we obtain
only a new Jacobian, but the structure of the manipulator is the same.
Remark 3. Analogous proofs can be carried out regarding the controllers in the manipulator
joint space considered earlier.

3.3 Advantages and disadvantages of the IQV controllers
Consider some aspects of the presented controllers in terms of the IQV.

1. The controllers expressed in terms of IQV seem complicated. Note however, that the
controls algorithms can be realized using quantities arising from the spatial operators
which decrease their computational complexity Jain & Rodriguez (1995). Also Kane’s
equations are computationally effective Kane & Levinson (1983). Thus, the algorithms
seem a useful tool for simulation of serial rigid manipulators.

2. The manipulator input torqueQ can be calculated from the relationship Q = (Υ−1)Tπ and
Q = mε, i.e for the controllers (30) and (42) it has have the form:

Q = M(θ)θ̈r + C(θ, θ̇)θ̇r + G(θ) + kP θ̃ + (Υ−1)TkDΥ−1s, (74)

Q = M(θ)θ̈r + C(θ, θ̇)θ̇r + G(θ) + kP θ̃ + mkDm
Ts. (75)

Comparing (75) and (74) with (28) it can be seen that the difference relies on an additional
term kP θ̃ and the use of the matrix (Υ−1)TkDΥ−1 or mkDmT instead of the matrix kD .
The term kP θ̃ causes that one obtains more precise trajectory tracking than using the
controller (28). In spite of that in Berghuis & Nijmeijer (1993) the classical controller with
the term kP θ̃ was proposed, the controllers in terms of the IQV have one more benefit. The
matrix mkDmT contains both kinematic and dynamical parameters which are present in
the matrix M(θ). As a result, the matrices m and mT give an additional gains and improve
the controller performance (after some time their elements are almost constant). Similarly,
the use of the controller (59), in comparison with the classical controller (50), has two
advantages. First, after transformation Q = ΦT� (see (21)) the generalized force vector
is as follows:

Q = Mθ̈r + C(θ, θ̇)θ̇r + G(θ) + Fθ̇r + ΦTkDΦs + JTA(θ)kPx̃. (76)

Recalling (50) one can observe that the NGVC controller has two terms which are absent
in the classical control algorithm. The first term contains instead of the matrix kD the
matrix ΦTkDΦ. The elements of ΦT and Φ give an additional gain and, as a result, the
desired position and velocity using the NGVC controller is achieved faster or with smaller
coefficients of kD than using the classical controller. The second term JTA(θ)kPx̃ ensures the
position error convergence in the operational space. Lack of the term causes that the proof
of the error convergence can be done based on the Barbalat’s Lemma Slotine & Li (1991).

3. An important advantages of the controllers in terms of the IQV arises from the fact,
that the matrices (Υ−1)TkDΥ−1 or mkDmT reflect dynamics of the considered system.
Consequently, the elements of kD serve for tuning of gain coefficients (in contrast in (28)
the matrix kD is selected using various methods depending on experience of the user).
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4. The slidingmode control algorithm described by Slotine and Li Slotine & Li (1987) enables
also adaptive trajectory control. The equation (1) can be written as follows Sciavicco &
Siciliano (1996):

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = Y(θ, θ̇, θ̈)p = τ (77)

where p is an m-dimensional vector of constant parameters and Y is an (N × m) matrix
which is a function of joint positions, velocities and accelerations. Decomposition of the
matrixM in Eq.(1) which leads to Eq.(8) (after multiplication by thematrixm−1) causes that
one obtains m−1Y(θ, θ̇, θ̈)p = ε. However, for dynamics equation in terms of the nominal
parameters one has m̂−1Y(θ, θ̇, θ̈) p̂ = ε̂. Therefore, in terms of the NQV vector adaptation
with respect to the vector of parameters p is impossible because parameters of the system
are involved in matrices m−1 and m̂−1. Analogous conclusion can be made about other
kinds of the IQV that is an disadvantage.

5. Robustness issue. In case where uncertainty of parameters occurs we should ask about
robustness of the proposed controller. The appropriate case concerning the GVC controller
is considered in Herman (2005a).

4. Simulation results using various controllers

4.1 Examples of serial manipulators
The DDA manipulator is characterized by the following set of manipulator parameters An et
al. (1988) (see Table 1):

Link number k 1 2 3
mk kg 19.67 53.01 67.13
Jxx kgm2 0.1825 3.8384 23.1568
Jxy kgm2 0 0 0
Jxz kgm2 −0.0166 0 0.3145
Jyy kgm2 0.4560 3.6062 20.4472
Jyz kgm2 0 −0.0709 1.2948
Jzz kgm2 0.3900 0.6807 0.7418
cxk m 0.0158 0 0
cyk m 0 −0.0643 −0.0362
czk m 0.0166 −0.1480 0.5337
lk m 0 0.462 0

Table 1. Parameters of the DDArm manipulator An et al. (1988)

The Yasukawa-like manipulator is characterized by the parameters given in Table 2. The
appropriate equations of motion can be found in reference Kozlowski (1992).

4.2 GVC - joint space
4.2.1 DDArm manipulator
In order to show performance and advantages of the controller (30) consider DDArm
manipulator depicted in Figure 1(a). The results are based on Herman (2005a).
The following fifth-order polynomial was chosen for tracking: initial points θi1 = (−7/6)π
rad, θi2 = (269.1/180)π rad, θi3 = (−5/9)π rad, and final points θ f1 = (2/9)π rad,
θ f2 = (19.1/180)π rad, θ f3 = (5/6)π rad, with time duration t f = 1.3 s. Starting points
were different from initial points Δ = +0.2,+0.2,+0.2 rad, respectively. All simulations (were
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Fig. 1. Examples of spatial manipulator: (a) kinematic scheme of DDArm; (b) kinematic
scheme of Yasukawa

Link number k 1 2 3
mk kg 10 30 65
Jxx kgm2 0.4 0.2 0
Jxy kgm2 0 0.01 0
Jxz kgm2 0 −0.01 0
Jyy kgm2 0.04 0.7 0
Jyz kgm2 −0.01 −0.01 0
Jzz kgm2 0.5 1.5 1.5
cxk m 0 0.01 0
cyk m 0.1 0.01 0
czk m 0.01 0 0
lk m 0.4 0.65 0

Table 2. Parameters of the Yasukawa-like manipulator

realized using MATLAB with SIMULINK). The assumed diagonal control coefficients were
as follows: kD = diag{10, 10, 10}, Λ = diag{15, 15, 15}, kP = diag{150, 150, 150} for the
GVC controller and kD = diag{10, 10, 10}, Λ = diag{30, 30, 30} for the classical controller
(CL). Diagonal values of the matrix Λ are two times smaller than for the classical controller in
order to show some differences between both control algorithms. The set of control gains is a
trade-of between acceptable position trajectory error and over-regulation.
Profiles of the desired joint position and velocity trajectories are shown in Figure 2(a). In
Figures 2(b) and 2(c) the joint position errors for GVC and classical (CL) controllers are
presented. The GVC controller gives similar errors for the first and the second joint. However,
all errors tend to zero very quickly. For CL controller (for the third joint) position error tends
slower. It can be concluded that third diagonal value of kD and Λ are not sufficient to obtain
comparable performance. But increasing of these gains may lead to over-regulation. Figure
2(d) – the error norm (in logarithmic scale) says that the position error is reduced faster if the
GVC controller is used. FromFigures 2(e) and 2(f) arises that joint torques obtained using GVC
controller and CL have comparable values. Each element of the matrix N given in Figure 2(g)
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Fig. 2. Simulation results - joint space control (DDArm based on Herman (2005a)): a) profiles
of desired joint position and velocity trajectory; b) joint position errors e for GVC controller;
c) joint position errors e for classical (CL) controller; d) comparison between joint position
error norms ||e|| (in logarithmic scale) for both controllers; e) joint torques Q obtained using
GVC controller; f) joint torques Q obtained using CL controller; g) elements of matrix N
obtained from GVC controller; h) kinetic energy in all joints and for the entire manipulator
(GVC controller); i) comparison between kinetic energy reduction (in logarithmic scale) for
both classical (KCL) and GVC (KGVC) controller
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represents a rotational inertia about joint axis arising from the motion of other manipulator
links. Figure 2(h) compares the kinetic energy for the whole manipulator K and for all joints.
The great value of K3 can be related to the dominant values of N3 (the two informations can be
obtained only for the GVC controller). From Figure 2(i) it is observable that the kinetic energy
is reduced faster using GVC controller than using the CL controller.

4.2.2 Yasukawa-like manipulator
The manipulator is depicted in Figure 1(b). The given below results are based on Herman
(2009b).
The polynomial trajectories were described with initial points θi1 = (1/3)π rad, θi2 = π
rad, θi3 = (−1/2)π rad, final points θ f1 = (−2/3)π rad, θ f2 = 0 rad, θ f3 = (1/2)π
rad, and the time duration t f = 1 s. The starting points were different from the initial
points Δ = +0.2,+0.2,+0.2 rad. It was assumed the following control coefficients set:
kD = diag{10, 10, 10}, Λ = diag{15, 15, 15}, kP = diag{150, 150, 150} for the GVC
controller (30). For the classical controller (28) we assumed the set kD = diag{10, 10, 10},
Λ = diag{30, 30, 30}. Diagonal elements values of the matrix Λ are two times smaller for the
GVC controller than for the classical one. For the same set of coefficients performance of the
classical controller are worse than for the considered case.
Profiles of the desired joint position and velocity trajectories are shown in Figure 3(a). The joint
position errors for the GVC and the classical (CL) controller are shown in Figures 3(b) and 3(c),
respectively. It is observable that the errors for the GVC controller tend very fast to zero and
the manipulator works correctly. But for the CL controller the joint position errors tend to
zero more slowly. Increasing the gain coefficients kD or Λ could lead to better performance
obviously under condition avoidance undesirable over-regulation. This observation confirms
Figure 3(d) because the error norm (in logarithmic scale) has distinctly smaller values for
the GVC controller than for the CL one. Figure 3(e) presents the joint torques obtained using
the GVC controller (for the classical one they have almost the same values). In Figure 3(f)
elements of the matrix N are shown (such information gives only for the GVC controller).
These quantities represents some rotational inertia along each axis which arise from other
links motion. They are characteristic for the tested manipulator and for the desired joint
velocity set. Values N3 are dominant almost all time what says that the third joint is the most
laden. Figure 3(g) a kinetic energy time history for the total manipulator K and for all joints
is presented. Most of the kinetic energy is related to the second joint (K2) (and also to the
same link). This fact may be associated with the dominant values N2 in the time interval
0.4 ÷ 0.6 s. Figure 3(h) compares the kinetic energy reduction for the manipulator if both
control algorithms are used. It can be noticed that after some time this energy is reduced
much faster using the GVC controller than using the classical one.

4.3 NQV - joint space
Simulations were done for the DDArmmanipulator with the parameters given in Table 1 and
under the same conditions. The assumed gain coefficients set was kD = diag{10, 10, 10}, Λ =
diag{15, 15, 15}, kP = diag{150, 150, 150} for the NQV controller and kD = diag{10, 10, 10},
Λ = diag{15, 15, 15} for the CL one. This means also that the desired joint position and
velocity trajectories are assumed as in Figure 2(a).
Simulation results obtained from the NQV controller (42) and the CL controller (28) are
presented in Figure 4. The joint position errors for the NQV and the CL controller, are
presented in Figure 4(a) and 4(b). One can observe that for the NQV controller all position
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Fig. 3. Simulation results - joint space control (Yasukawa based on Herman (2009b)): a)
desired joint position thd and joint velocity vd trajectory for all joints of manipulator; b) joint
position errors e for GVC controller; c) joint position errors e for classical (CL) controller; d)
comparison between joint position error norms ||e|| (in logarithmic scale) for both
controllers; e) joint torques Q obtained using GVC controller; f) elements of matrix N
obtained from GVC controller; g) kinetic energy reduced by each joints and by the total
manipulator (GVC controller); h) comparison between kinetic energy (in logarithmic scale)
for classical (KCL), and GVC (KGVC) controller
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Fig. 4. Simulation results - joint space control (DDArm): a) joint position errors e for NQV
controller; b) joint position errors e for CL controller; c) joint torques Q obtained using NQV
controller; d) articulated inertias Dk for all joints; e) kinetic energy K1,K2,K3 for all
manipulator joints and entire kinetic energy K; f) comparison between kinetic energy
reduction for NQV and CL controller (in logarithmic scale)

errors tend to zero after about 1.6 s. For the CL controller errors e1, e2 tend very fast to zero but
e3 tends to zero more slowly than for the NQV controller. Figure 3(c) shows the joint torques
obtained from the NQV controller. The big initial value of the joint torque Q3 arises from
the fact that we feed back some quantity including the kinematic and dynamical parameters
of the manipulator instead of the joint velocity only. However, for the tested manipulator
this value is allowed as results from reference An et al. (1988). The articulated inertia Dk for
each joint (Figure 4(d)) can be obtained only using the NQV controller. Each value Dk says
how much inertia rotates about the k-th joint axis. Most of the rotational inertia is transfered
by the third joint axis which means that dynamical interactions are great for the third joint
and the third link. Figure 4(e) gives a time history of the kinetic energy for each joint and
for the manipulator. Most of the energy is related to the third link which can be explained by
great values of D3. Next Figure 4(f) compares the kinetic energy (in logarithmic scale) which is
reduced by the manipulator. After about 1.6 s the kinetic energy is canceled for NQV controller
much faster than for CL controller.

4.4 GVC - operational space
The simulation results are obtained for a 3 D.O.F. Yasukawa-likemanipulator Herman (2009a).
The first objective is to show performance of the GVC controller (55) in the manipulator
operational space. The following parameters are different than in Table 2:

• link masses: m1 = 5 kg, m3 = 60 kg;
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• link inertias: Jxx2 = 0.6 kgm2, Jxz1 = 0.02 kgm2, Jyy1 = 0.05 kgm2, Jyy2 = 0.8 kgm2,
Jzz2 = 2.0 kgm2, Jzz3 = 3.0 kgm2;

• distance: axis of rotation - mass center : cx1 = 0.01 m, cx2 = 0.1m, cy1 = 0.01 m;

• length of link: l2 = 1.3 m.
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Fig. 5. Simulation results - operational space control (Yasukawa based on Herman (2009c) -
the same as in Herman (2009a)): a) desired position trajectories in the operational space; b)
desired orientation trajectories in the operational space (used for GVC and NGVC case)

The desired position and orientation described by the vector xd =
[
pdx pdy pdz odφ odϑ

]T

are shown in Figures 5(a) and 5(b) Herman (2009c).
The simulations results realized in MATLAB/SIMULINK (Figure 6) come from reference
Herman (2009a).) The control gain matrices were assumed for all controllers as follows:
kD = diag{20, 20, 20}, Λ = diag{20, 20, 20, 20, 20, 20}, kP = diag{20, 20, 20, 20, 20}, ρ = 1.
Viscous damping coefficients were the same for all joints F = diag{2, 2, 2}.
Figures 6(a) and 6(b) show the position and the orientation error for the GVC controller (55)
in the operational space, respectively. One can observe that both errors converge to zero after
about 2 s. Next, in Figures 6(c) and 6(d) the same errors for the classical controller (50) are
presented. As arises from both figures in order to achieve the steady-state the controller needs
more than 3 s. At the same time the orientation errors are only close to zero. In the first phase
of the manipulator motion the classical controller (CL) gives smaller orientation error than
the GVC controller but after about 1 s the GVC controller gives better performance. This
phenomenon results from the fact that the dynamical parameters set in the controller (55)
is used. From Figure 6(e) one can observe that after 1 s the kinetic energy KGVC (for the
GVC controller) is reduced faster than for the classical controller KCL (results are presented
on logarithmic scale).
In Figure 6(f) the position error norms (on logarithmic scale) measured in the manipulator
task space for the GVC controller and the classical controller (CL) are compared. It can be seen
that the position error norm ||ep||GVC is smaller than the error norm ||ep||CL. Comparison
between the orientation error norms for both controllers are given in Figure 6(g). In the first
phase of the manipulator motion the classical controller (CL) gives smaller orientation error
than the GVC controller but after about 0.9 s the latter controller gives better performance.
This behavior also results from the fact that the dynamical parameters set in the controller
(55) is used. The joint torques for the GVC controller are shown in Figure 6(h). It is observable
that at the start (before 0.2 s) the torque in the third joint Q3 has great value (it is a consequence
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Fig. 6. Simulation results - operational space control (Yasukawa - based on Herman (2009a)):
a) position errors in the operational space for GVC controller; b) orientation errors in the
operational space for GVC controller; c) position errors in the operational space for classical
(CL) controller; d) orientation errors in the operational space for CL controller; e) comparison
between kinetic energy reduction (on logarithmic scale) for GVC and CL controller; f)
comparison between position error norm on logarithmic scale for both controllers; g)
comparison between orientation error norm on logarithmic scale for both controllers (GVC
and CL); h) joint torques Qk for GVC controller; i) joint torques Qk for CL controller
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of including dynamical parameters of the system in the GVC controller). As it is shown from
Figure 6(i) the third joint torque for the CL controller has smaller value than using the GVC
one. However, after about 0.3 s the torques for both controllers are comparable.

4.5 NGVC - operational space
Consider the Yasukawa-like manipulator again. The following parameters are different than
in Table 2:

• link masses: m1 = 5 kg, m3 = 60 kg;

• link inertias: Jxx1 = 0.5 kgm2, Jxx2 = 0.6 kgm2, Jxz1 = 0.02 kgm2, Jyy1 = 0.05 kgm2,
Jyy2 = 0.8 kgm2, Jzz3 = 3.0 kgm2;

• distance: axis of rotation - mass center : cx1 = 0.01 m, cx2 = 0.1m, cy1 = 0.01 m, cz1 = 0.02
m;

• length of link: l2 = 1.3 m.

The results obtained for the NGVC (59) controller are compared with the obtained from the
classical controller (50) in Figures 7 and 8 Herman (2009c).
The gain matrices were chosen as (the same for both controllers, i.e. the NGVC and the CL):
kD = diag{4, 4, 4}, Λ = diag{20, 20, 20, 20, 20, 20}, kP = diag{5, 5, 5, 5, 5}, δ = 0.25 whereas
the viscous damping coefficients were F = diag{2, 2, 2}.
In Figures 7(a) and 7(b) the position and the orientation error for the NGVC controller (59) in
the operational space are shown. Both errors tend to zero after about 1.5 s. The same errors for
the classical (CL) controller (50) are given in Figures 7(c) and 7(d). After 3 s (Figure 7(c)) the
position steady-state is not achieved. As a result to ensure the satisfying error convergence,
the CL controller needs more time than 3 s. The same conclusion can be made about the
orientation error convergence (Figure 7(d)). The joint applied torques for the NGVC controller
are shown in Figure 7(e). Comparing Figures 7(e) and 7(f) it can be observed that maximum
values of the torques using the NGVC controller are not much larger than if the CL controller
is applied.
The diagonal elements of the matrix Φ are given in Figure 8(a) whereas the off-diagonal ones
in Figure 8(b). Recall that the matrices ΦT and Φ give an additional gain in the term ΦTkDΦ of
the controller (59). It can be concluded that the NGVC controller uses small control coefficients
kD k to ensure fast position and orientation trajectory tracking. Moreover, each element Φ2

kk
represents an rotational inertia corresponding to the k-th quasi-velocity,whereasΦki (for i �= k)
show dynamic coupling between the joint velocities (and also between the appropriate links).
Such information is available only from the NGVC controller.
From Figure 8(c) it can be seen that the kinetic energy K which must be reduced by the
manipulator concerns mainly the third quasi-velocityK3 (and also by the 3-th link). Figure 8(d)
compares the kinetic energy reduction (on logarithmic scale) for both controllers. After about
1 s the kinetic energy KNGVC for the NGVC controller decreases faster than for the classical
controller KCL. Consequently, the NGVC control algorithm gives faster error convergence than
the CL control algorithm.

4.6 Discussion
From the presented simulation results arises the fact that the proposed nonlinear controllers in
terms of the IQV ensures faster, than the classical controller, the position and orientation error
convergence. Moreover, the kinetic energy reduction is also faster if the IQV controller is used.
An disadvantage of the IQV controllers is that sometimes, at the beginning of motion, great
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Fig. 7. Simulation results - operational space control (Yasukawa - based on Herman (2009c)):
a) position errors in the in the operational space for NGVC controller; b) orientation errors in
the operational space for NGVC controller; c) position errors in the operational space for
classical (CL) controller; d) orientation errors in the operational space for classical (CL)
controller; e) joint applied torques Q for NGVC controller; f) joint applied torques Q for CL
controller

initial torque can occur. The great values come from including the manipulator parameters set
into the control algorithm. Note, however that the same reason causes the benefit concerning
the fast error convergence and fast kinetic energy reduction. Thus, it should be verified if
for the considered manipulator the real torques are acceptable. It can be done via simulation
because the expected torques are determined from the time history ofQ. To obtain comparable
results as for the IQV controller we have to assume for the CL controller the matrix kD with
bigger gain coefficients. However, at the same time elements of the matrix Λ should be enough
great to ensure fast error convergence. From all presented cases arise that if the IQV controller
is used then the gain matrix kD has rather small values. One can say that they serve for precise
tuning because the resultant gain matrix is related to the system dynamics.

5. Conclusion

In this paper, a review of a theoretical framework of non-adaptive sliding mode controllers
in terms of the inertial quasi-velocities (IQV) for rigid serial manipulators was provided.
The dynamics of the system using several kind of the IQV, namely: the GVC, the NQV, and
the NGVC was presented. The IQV equations of motion offer some advantages which are
inaccessible if the classical second-order differential equations are used. The IQV slidingmode
control algorithms, based on the decomposition of the manipulator inertia matrix, can be
realized both in the manipulator joint space and in its the operational space. It was shown
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Fig. 8. Simulation results - operational space control (Yasukawa - based on Herman (2009c)):
a) diagonal elements of the matrix Φ; b) other elements of the matrix Φ; c) kinetic energy
time history corresponding to each quasi-velocity ϑk; d) comparison between kinetic energy
reduction (on logarithmic scale) for the NGVC controller and the CL controller

that the considered controllers are made the equilibrium point globally asymptotically or
exponentially stable in the sense of Lyapunov. Some advantages and disadvantages of the
IQV controllers were also given in the work. Moreover, the proposed control schemes are also
feasible if the damping forces are taken into account. Simulations results for two different 3
D.O.F. spatial manipulators have shown that the IQV controllers can give faster position and
orientation error convergence and/or using smaller velocity gain coefficients than the related
classical control algorithms. Faster kinetic energy reduction is also possible if the classical
controller is replaced by the IQV one. It is worth noting that the discussed controllers can
serve for dynamical coupling detection between the manipulator links via simulation which
allows one to avoid some expensive experimental tests.
Future works should concern investigation of the IQV controllers with models of friction,
especially with Coulomb friction and dynamic friction models. In order to show real
performance and properties of the controllers, experimental validation is expected.
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1. Introduction 
A number of papers [1-7] have been presented to address the issues of multi-body 
mechanisms. Examples of their applications are found in gasoline and diesel engines, where 
the gas force acts on the slider and the motion is transmitted through the links. Whether the 
connecting rod is assumed to be rigid or not, the steady-state and dynamic responses of the 
connecting rod of the mechanism with time-dependent boundary condition were obtained 
by Fung et al. [1-3]. In addition, a number of controllers, for example, repetitive control [4], 
adaptive control [5], computed torque control [6], and fuzzy neural network control [7] were 
designed for the multi-body mechanisms.  
Over the past 25 years, the SMC algorithm [8-10] has been taken into account for dynamic 
control problems. The main feature of the SMC is to allow the sliding mode to occur on a 
prescribed switching surface, so that the system is only governed by the sliding equation 
and remains insensitive to a class of disturbances and parameter variations [8]. It is noted 
that the SMC is a robust control method and has been well established in pure motion 
control [9]. Afterwards, in order to eliminate the chattering phenomenon, which is 
commonly found in simulation of discontinuous SMC systems, and to simplify a hybrid 
numerical method that incorporates benefits of both SMC and differential algebraic 
equations, the (DAE) stabilization method was developed and successfully used to simulate 
constrained multi-body systems (MBS) whether under holonomic constraint or not [10]. 
However, the development of a control law which has been induced by a constrained force 
has not been adequately developed consistently in the previous studies. Su et al. [11] 
attempted to use the SMC for simultaneous position and force control on a constrained 
robot manipulator. They asserted that the control law, along with inclusion of the constraint 
force error in the definition of the sliding surface, produces an asymptotically stable force 
tracking error. However, Grabbe and Bridges [12] addressed their formulation as being a 
departure from the typical definition of a sliding surface, which is a linear differential 
equation in one tracking error variable [13], and the errors in the separate force control law 
and stability analysis were presented in [11]. Recently, Lian and Lin [14] have proposed a 
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new sliding surface in terms of motion error and force error, and claimed that the errors in 
[11] are improved; therefore, the asymptotic stability of the motion-tracking error and force-
tracking error can be ensured. However, Dixon and Zergeroglu [15] pointed out an error in 
the sliding mode control stability analysis of [14].  
In this chapter, our intent is to improve the errors in [11, 14] and simplify the control design 
and stability proof for the three typical mechanisms, including the slider-crank mechanism, 
the quick-return mechanism and the toggle mechanism as shown in Figs. 1~3 respectively, 
which are not seen in any references addressing the force/motion SMC. Here, a separate 
sliding surface is proposed using the measurements of the angular position and speed of the 
crank, but the SMC algorithm is derived as well in a simple manner using only the force 
tracking error to construct the controller. In these schemes, the force tracking error is shown 
to be arbitrarily small by changing the force control feedback gain. Then, by exploiting the 
structure of its dynamics, the fundamental properties of the dynamics are obtained to 
facilitate controller design, whereby the asymptotic stability of motion tracking error in 
sliding surface and force tracking error accumulated in controller can be ensured. 
The organization of this chapter is arranged as follows. In Section 2, the kinematic and 
dynamic analysis of the multi-body mechanism is investigated. A number of previous 
papers [4-7, 16-17] have shown the position and speed controllers for the regulation and 
tracking problems of the multi-body mechanism in the theoretical analysis and experimental 
results. However, control of the constrained force has not been investigated. The SMC laws 
are designed in Section 3. The simulated examples are shown in Section 4 and, finally, some 
conclusions are drawn. 

2. Dynamics analysis 
2.1 Dynamic equation of motion 
Based on the Euler-Lagrange formulation [4], the equation of motion for a mechanism can 
be expressed as:  

 ( ) = +T A
QM(Q)Q + N Q,Q +Φ λ Q U . (1) 

where M(Q)  is an n n×  inertia matrix, nR∈Q  is the generalized coordinate vector, 
nR∈N(Q,Q)  is the nonlinear vector, mR∈λ is the vector of Lagrange multipliers, 

[ ] m nR ×=  ∂ ∂ ∈QΦ Φ Q  is the partial derivative of the constraint equation with respect to the 
coordinate and is called the constraint Jacobian matrix, nR∈AQ  is the vector of non-
conservative forces and nR∈U  is the vector of applied control efforts. 
In order to obtain the general form of the force/motion controller design, we rewrite the 
nonlinear vector as: 

 = +C GN(Q,Q) N (Q,Q)Q N (Q) . (2) 

where n nR ×∈CN (Q,Q)  is the vector of coriolis and centrifugal forces; nR∈GN (Q) is the 
vector of gravitational force. 
Then, Equation (1) becomes: 

 + = + +A
C GM(Q)Q + N (Q,Q)Q N (Q) Q U F . (3) 

where = − T
QF Φ λ  is the constraint force. 
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2.2 Dynamic properties of the mechanism 
Equation (3) is similar to the motion equation of an n-link rigid constrained robot [11, 15] in 
the state space. Two simplifying properties should be noted about this dynamic structure: 
Property 1. The individual terms on the left-hand side of Equation (3) and the whole 
dynamics are linear in terms of a suitably selected set of equivalent manipulator and load 
parameters, i.e., 

 + = αC GM(Q)Q + N (Q,Q)Q N (Q) Y(Q,Q,Q) . (4) 

where Y(Q,Q,Q)  is a n r×  matrix; rRα ∈ is the vector of equivalent parameters. 
Property 2. From the given proper definition of the matrix CN (Q,Q) , − CM(Q) 2N (Q,Q)  is 
skew-symmetric. The detailed proof can be seen in Appendix A. 
Due to the presence of m constraints, the degree of freedom of the mechanism is (n-m). In 
this case, (n-m) linearly independent coordinates are sufficient to characterize the 
constrained motion. From the implicit function theorem, the constraint Equation (1) can 
always be expressed as [18]: 

 =p σ(q) . (5) 

Equation (5) is assumed that the elements of q are chosen to be the last (n-m) components of 
Q. If not the above case, Equation (1) still could always be reordered so that the last (n-m) 
equations would correspond to q and the first m equations to p. That is, .⎡ ⎤= ⎣ ⎦

TT TQ p q   

Then, to simplify the equation form of the dynamic model, defining 

 ( )
T T

n n mR × −
−

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂
= = = ∈⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

n m
Q p q σ(q)L(q) I
q q q q

. (6) 

and using Equation (5), we have: 

 =Q L(q)q , (7) 

 = +Q L(q)q L(q)q . (8) 

Therefore, the dynamic model of Equation (3) restricted to the constraint surface can be 
expressed in a reduced form as: 

 + + = + +A
1 GM(q)L(q)q N (q,q)q N (q) Q U F . (9) 

where 

 = +1 CN (q,q) M(q)L(q) N (q,q)L(q) . (10) 

By exploiting the structure of Equation (9), three properties can be obtained as follows: 
Property 3. In terms of a suitably selected set of parameters, the motion equation (9) is still 
linear, i.e. 

 1)+ + = α1 GM(q)L(q)q N (q,q)q N (q Y (q,q,q) . (11) 
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Property 4. Define the matrix as 

 ( ) ( )n m n mR − × −= ∈TA(q) L (q)M(q)L(q) . (12) 

Then, = T
1A 2L (q)N (q,q)  is skew-symmetric, where 

( )
1( , ) ( ) ( ) ( , ) ( ) n n m

CN q q M q L q N q q L q R × −= + ∈ , ( )( ) n n mL q R × −∈ . 
Property 5. = =T T T

Q Q[Φ L(q)] L (q)Φ 0 . 
The above three properties are basic principle in designing the force/motion SMC law. 

3. Design of the SMC Law 
3.1 The sliding mode controller design  
A number of previous papers have only shown the position and speed controller designed 
for the regulation and tracking problems control of the constrained mechanisms. However, 
control of the constrained force has not been investigated in the previous studies. In this 
section, a separate sliding surface is proposed using the measurements of the angular 
position and speed of the crank, but the SMC algorithm is derived as well in a simple 
manner using only the force tracking error to construct the controller. 
Given a desired trajectory dq  and a desired constrained force dF , or identically a desired 
multiplier dλ , which satisfy the imposed constraint, i.e., 0=dΦ(q ) and = − T

d Q d dF Φ (q )λ . The 
control objective is to determine the SMC law such that → dq q  and → dλ λ  as t → ∞ .  
From the SMC methodology, we define the tracking error n mR −∈me and a sliding surface 

n mR −∈1s  as: 

 )= −m de q(t) q (t . (13) 

 m= − = +1 r ms q q e Λe . (14) 

where n mR −∈rq  is the reference trajectory and ( ) ( )n m n mR − × −∈Λ  is a tunable matrix. 
The sliding controller [12] is defined as: 

 ϕ= − + −T A
1 1 Q cU Y (q,q,q) L(q)s Φ (q)λ Q . (15) 

where 1Y  is a n r×  matrix of known functions of q,q and q , L(q)  is defined in Equation (6), 
[ ]T rRϕ ϕ ϕ= ∈1 r...  is the vector of switching functions, and mR∈cλ  is a force control that is 

defined as: 

 = −c d λλ λ Ke . (16) 

where K is a m m× constant matrix of force control feedback gains, and λe is the error 
vector of the multipliers and defined as 

 mR= − ∈λ de λ λ . (17) 

3.2 Stability analysis 
Substituting Equation (15) into the dynamic model of Equation (9), whose order was 
reduced using property 3, we have: 
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 ϕ − + − = αT T
1 1 Q c Q 1Y (q,q,q) L(q)s Φ (q)λ Φ (q)λ Y (q,q,q) . (18) 

Defining α  as a constant r-dimensional vector and replacing q  by the reference 
trajectory rq , then the linear parameterization of the dynamics (Property 3) leads to: 

 + + = αr r r 1 r r r G r 1 r r rM(q )L(q )q N (q ,q )q N (q ) Y (q ,q ,q ) . (19) 

Using the derivative of the sliding surface equation (14) and substituting into Equation (11), 
we obtain: 

 1+ + + + = α1 r 1 1 r GML(s q ) N (s q ) N Y . (20) 

Then combining Equation (18) with Equation (20) and using Equation (19), we obtain: 

 ϕ= − − − + −T T
1 1 1 1 1 1 Q C QMLs Y Y α N s Ls Φ λ Φ λ . (21) 

According to property 5, the above equation becomes: 

 
1.ϕ

=

= − α − −

T
1 1

T T T T
1 1 1 1

As L MLs

L Y L Y L N s L Ls
 (22) 

To derive the control algorithm, the generalized Lyapunov function is considered as: 

 1
2

= T
1 1V s As . (23) 

Differentiating V with respect to time and using property 4, Equation (23) becomes: 

 

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1

1
2

( )

.

T T T T T

T T T T T T T

T

s As s As s As s L N s

s L Y L Y L N s L Ls s L N s

s L Y L Y L Ls

ϕ

ϕ

= + = +

= − α − − +

= − α −T T T
1 1

V

( )

 (24) 

The ϕ  is chosen as: 

 ϕ
−

=

⎛ ⎞
⎜ ⎟= −α
⎜ ⎟
⎝ ⎠

∑
n m

T
1 1j 1 ji

j 1
sgn s (L Y ) ) ; 1,2,...,i r=  (25) 

such that 

 0≤ <T T
1 1V s L Ls . (26) 

In the derivation of Eq. (24), it is noted that  ( ) 2 ( , )CM Q N Q Q−  is skew-symmetric, and 
( 2 )T

CL M N L−  is also skew-symmetric, which is the same as those in [11, 14]. Besides, the 
special cases of the three typical mechanisms in this chapter, ( 2 )T

CL M N L−  is always equal 
to zero for 1n m− = .   
To reduce the chattering phenomenon along the sliding surface 0s = , we adopt the quasi-
linear mode controller [13], which replaces the discontinuous term of sign function of 
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Equation (25) with a continuous function inside a boundary layer around the sliding surface 
[24]. Therefore, the sgn(S) is replaced by the saturated function:  

1

1

if s ε,
s ssat( ) if ε s ε,ε ε

if s ε,

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

>
= − < <

>−

 

where  ε is the width of the boundary layer. This limits the tracking error and guarantees an 
accuracy of ε  order while alleviating the chattering phenomenon. 
From Equation (23) and Equation (26), it is evident that a sliding surface 1s  is at last 
converged exponentially to zero, i.e., →me 0  as t → ∞ . As if → dq q , the condition 

=d dp σ(q )  also implies that → dp p . 
Therefore, 

as t→ → ∞dq q . 

4. Simulation examples of the three typical mechanisms  
4.1 The slider-crank mechanism 
For more details on the kinematic and dynamic analysis of the slider-crank mechanism, refer 
to [19]. Using Hamilton’s principle and Lagrange multipliers [20] and adopting the 
generalized coordinate vector [ ]Tφ θ=Q in Equation (1) for the slider-crank mechanism 
shown in Figure 1, the dynamic equation can be obtained associated with the following 
matrices and elements: 

 

[ ]

1 2 3

1 2 3

1

2

2 2 2
2 2

2 2 2
1 2

2
1

    

( ) sin
cos cos     

( ) sin
1 1sin    sin sin
3 2
1 ( ) sin
2

sin cos  

B E

B E

B B

B

B

A E K K K
E B P P P

F F l u
l r

F F r u

A m l m l E m m rl

B m r m m r

K m l

φ
φ θ

θ

φ θ φ

θ

φ φ φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
+⎡ ⎤ ⎡ ⎤

= − = =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦
⎛ ⎞= − − = − +⎜ ⎟
⎝ ⎠

= − − +

= −

C G

A
Q

M N N

Φ Q U

2 2 3 2

2
1 2 2 2 3

1 1 cos sin    cos
2 2

1 sin cos    ( ) sin cos    0
2

B

B B

K m m rl K m gl

P m m rl P m m r P

θ θ φ φ

φ θ φ θ θ θ

⎛ ⎞= − + = −⎜ ⎟
⎝ ⎠

⎛ ⎞= − + = − + =⎜ ⎟
⎝ ⎠

 (27) 

where the dimensions of the slider-crank mechanism are 2, 1n m= = , and 1r =  in the 
dynamic analysis. For the single degree-of-freedom slider-crank mechanism, only one 
constraint equation exists, which can be shown as:  

 sin sin 0r θ l φ= − =Φ(Q) . (28) 
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The position of the slider B can be expressed as:  

 cos cosBx r lθ φ= + . (29) 

Substituting Equation (28) into Equation (29) yields: 

 
1

2 2 2 2cos sinBx r l rθ θ⎡ ⎤= + −⎣ ⎦
 (30) 

The angular displacement of the crank can be obtained as:  

 
2 2 2

1cos
2

B

B

x r l
rx

θ − ⎡ ⎤+ −
= ⎢ ⎥

⎢ ⎥⎣ ⎦
. (31) 

The result can also be obtained if the cosine law is applied. 
The Jacobian matrix of the constraint equation (28) is 

 [ ]cos cosl r
θ

φ θ
φ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂
= = = −⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

Q
Φ(Q) Φ(Q) Φ(Q)Φ

Q
. (32) 

Differentiating Equation (28) with respect to time yields the constraint velocity equation: 

 cos cos 0r lθ θ φ φ= − =Φ(Q) . (33) 

Therefore, the matrix defined in Equation (6) becomes 

 cos1 1
cos

T TT r
l

φ θ φ θ
θ θ θ φ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂⎡ ⎤= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦

QL(q)
q

 (34) 

and its first time derivative becomes 

 
2 2

sin cos cos sin 0
cos

T
rl rl

l
φ φ θ θ φ θ

φ
⎡ ⎤−

= ⎢ ⎥
⎣ ⎦

L(q)  (35) 

The dynamic equation (9) of the slider-crank mechanism, when restricted to the constraint 
equation (28), can be expressed as: 

 

1 22 2

1 22 2

2

sin cos cos sin coscos
coscos cos

cos sin cos cos sin cos
cos coscos
1 ( ) sincos
2 ( )0

B E

B E

rl rl rr A K KA E
ll l

r rl rl rE B E P Pl ll

F F lm gl
F F r

φ φ θ θ φ θ θθ
φφ φ

θ θ
θ φ φ θ θ φ θ θ
φ φφ

φφ

⎡ ⎤−⎡ ⎤ + ++ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + ⎢ ⎥⎢ ⎥ −+ + +⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤ +−⎢ ⎥+ =
⎢ ⎥ +
⎢ ⎥⎣ ⎦

1

2

cos
.

sin cos
u l
u r

φ
λ

θ θ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (36) 

The symbols 1 2 1 2, , , , , ,A E B K K P P  and 2P  are shown in Equation (27). It is noted that BF  is 
the friction force, EF  is the external force, and 1 cosf l φλ=  and 2 cosf r θλ= −  are the 
constraint forces. From the results presented above, property 1~property 5 mentioned in 
Section 2.2 are all verified and fully satisfied in this example. 
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The control objective is to design a feedback controller so that the angle θ  tracks the desired 
trajectory dθ  and maintains the constraint force [ ]1 2

Tf f  to the desired one dF . In here, 
dθ and dF  are assumed to be consistent with the imposed constraint. The block diagram of 

the SMC algorithm is shown in Figure 4. 
Since λ → dλ  means [ ]1 2

Tf f → dF , dθ  and dλ  are chosen as 5.76( )rad=dθ  and 15=dλ  in 
the simulations. The initial values of the constraint forces are assumed to be 

[ ]= =T
d 1 2F (0) f (0) f (0) 0 , i.e., =λ(0) 0 . 

Using Equation (19), the applied control effort [ ]1 2
Tu u=U  can be derived as: 

 ϕ= − + −T A
1 1 Q CU Y Ls Φ λ Q . (37) 

where 

⎡ ⎤= + +⎣ ⎦1 d 1 d G
1Y MLθ N θ N
α

, ϕ
⎧ <⎪= ⎨

− >⎪⎩

T
1 1 1

T
1 1 1

α , s (L Y ) 0

α , s (L Y ) 0
, = + = − + −1 m m d ds e Λe (θ θ ) Λ(θ θ ) . 

For numerical simulations, the parameters of the slider-crank mechanism are chosen as: 
1 23.64 , 1 18 , 1 8 , 0 1 , 0 305 , 0.055 .Bm kg m . kg m . kg r . m l . m lp m= = = = = =  and 1 1α = , 1 1α =  and 

5Λ = . 
Since the trajectory tracking on the constraint surface with a specified constraint force is of 
interest, the initial position and speed of the slider-crank mechanism are chosen on the 
desired trajectory as: 

0

(0) 4.712( ); (0) 0.334( ); (0) 0; (0) 0;
( ) 0.343 , ( ) 0.443 .B B f

rad rad
x t m x t m
θ φ θ φ= = − = =

= =
. 

All the parameters in the SMC controller are chosen to achieve the best transient 
performance in numerical simulations under the limitation of the control effort and the 
requirements of stability. Furthermore, for the reason of using a single input actuation on 
joint 1, the control effort is only needed in the second equation of the constrained motion of 
Equation (36). As to the first part of Equation (36), it shows that the force equilibrium either 
with holonomic or nonholonomic constraints and the torque is exerted at joint 2. The 
responses of the crank angle, which is shown in Figure 5(a), reach the desired value in about 
0.8 sec. The slider position manipulated from Equation (29) is shown in Figure 5(b). The 
tracking results of the crank angle θ  and the slider position Bx  coincide with previous 
studies by Fung et al. [16, 17]. The control effort of the applied torque τ  is shown in Figure 
5(c) and the sliding surface 1s  is shown in Figure 5(d). The Lagrange multiplier Cλ  is 
shown in Figure 6(a), and constraint forces of joints 1 and 2 are shown in Figure 6(b) and 
Figure 6(c), respectively. From Figures 5 and 6, the control objectives of force/motion of the 
slider-crank mechanism are achieved successfully. 

4.2 The quick-return mechanism 
To present the robustness and a well-established control method of the SMC controller, the 
quick-return and toggle mechanisms (see Section 4.3) will be chosen to verify the SMC 
algorithm, which is then adequately developed to the general case of multi-body 
mechanisms. The quick-return mechanism is addressed first, where the kinematic and 
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dynamic analysis of the mechanism is found in [21] and the generalized coordinate vector 
[ ]Tφ β θ=Q in Equation (1) for the quick-return mechanism shown in Figure 2 is 

adopted. The dynamic equation can be obtained and is associated with the following 
matrices and elements:  

1 1 0
1 1 0

0 0

A G
H B

CC

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M  
1 1 0
1 1 0

0 0 0
C

P T
Y R

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

N  0=GN  

( )cos cos sin sin 0 sin sin cos cos
sin cos 0

D R R R R
L S

φ θ θ φ φ θ θ φ
φ β

⎡ + + − − ⎤
= ⎢ ⎥−⎣ ⎦

QΦ  

1

2

3

cos
sin   
0

PL u
PS u

u

φ
β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

AQ U     

( )2 2 2
1 2

11 cos
3 CA m L m m L φ= − − + , 2

11 sin cos
2 CG m m SL β φ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
, 

2
11 sin cos
2 CH m m SL β φ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
, 2 2

2
11 sin
3 CB m m Sβ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
, 

( )2 2
3 2

1 ,   1 cos sin
3 CCC m R P m m L φ φ φ= − = + , , 

2
11 cos cos
2 CT m m SLβ β φ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
, 2

11 sin sin
2 CY m m SLφ β φ⎛ ⎞= +⎜ ⎟

⎝ ⎠
, 

 21 sin cos .CR m S β β β= −  (38) 

where 3, 2n m= =  and 1r =  are employed in the dynamic analysis. 
For the single degree-of-freedom quick-return mechanism, there exist two constraint 
equations as follows:  

 ( )
sin ( cos ) sin cos

0
sin (1 cos )

D R R
S L

φ θ θ φ
β φ

+ −⎡ ⎤
= =⎢ ⎥− −⎣ ⎦

Φ Q . (39) 

where ϕ  can be obtained by analyzing its geometric relations 

 1 sintan
cos

R
D R

θφ
θ

−=
+

. (40) 

The position of slider C can be expressed as: 

 cos sinx S Lβ φ= −C . (41) 

The Jacobian matrix of the constraint equations is: 
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 ( )cos cos sin sin 0 sin sin cos cos
sin cos 0

D R R R R
L S

φ θ θ φ φ θ θ φ
φ β

⎡ + + − − ⎤
= ⎢ ⎥−⎣ ⎦

QΦ . (42) 

Therefore, the matrix defined in Equation (6) is: 

 
2 2

2 2 2 2

1 1

( cos ) sin ( cos ) 1
2 cos cos ( 2 cos )

T

T
DR R L DR R

D R DR S D R DR

φ β θ φ β φ β φ
θ θ θ θ θ θ φ θ

θ φ θ
θ β θ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂⎡ ⎤= = = = ×⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤+ +
= ⎢ ⎥

+ + + +⎢ ⎥⎣ ⎦

QL(q)
q

 (43) 

Then, differentiating Equation (43) with respect to time yields: 

 

2 2

2 2 2

2 2

2 2 2 2 2
11

2 2 2
21

2 2 2 2 2

sin ( )
( 2 cos )

sin sin cos ( )
cos ( 2 cos )

( 2 cos )( cos )( sin sin cos cos )
cos ( 2 cos )

0

DR R D
D R DR

LSDR R D
S D R DR L

LLS D R DR DR R
S D R DR

θ θ
θ

θ φ θ β
β θ

θ θ β φ β φ φ β
β θ

⎡ ⎤−
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥−⎢ ⎥+
⎢ ⎥+ +
⎢ ⎥

= =+ + + +⎢ ⎥
⎢ ⎥+ +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L(q)
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. (44) 

The dynamic equation of a quick-return mechanism, when restricted to the constraint 
equation, can be expressed as: 

 

2 2

2 2 2 2

2 2

2 2 2 2

( cos ) sin ( cos )1 1
2 cos cos ( 2 cos )

( cos ) sin ( cos )1 1
2 cos cos ( 2 cos )

DR R L DR RA G
D R DR S D R DR

DR R L DR RH B
D R DR S D R DR

CC

θ φ θ
θ β θ

θ φ θ
θ β θ

⎡ ⎤⎧ ⎫ ⎧ ⎫+ +⎪ ⎪ ⎪ ⎪× + ×⎢ ⎥⎨ ⎬ ⎨ ⎬
+ + + +⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭

⎢ ⎥⎧ ⎫ ⎧ ⎫+ +⎪ ⎪ ⎪ ⎪⎢ ⎥× + ×⎨ ⎬ ⎨ ⎬⎢ ⎥+ + + +⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

2 2

11 21 2 2 2 2

2 2

11 21 12 2 2 2

1 ( cos ) 1 sin ( cos )1 1
2 cos cos ( 2 cos )

1 ( cos ) 1 sin ( cos )1 1
2 cos cos ( 2 cos )

0

co

P DR R T L DR RA L G L
D R DR S D R DR

Y DR R R L DR RH L B L
D R DR S D R DR

PL

θ

θ φ θ
θ β θ

θ φ θ θ
θ β θ

+

⎡ ⎤× + × +
× + × + +⎢ ⎥

+ + + +⎢ ⎥
⎢ ⎥× + × +⎢ ⎥+ × + × + + =
⎢ ⎥+ + + +
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=
( )1

1
2

2
3

s cos cos sin sin sin
sin 0 cos .
0 sin sin cos cos 0

u D R R L
PS u S

u R R

φ φ θ θ φ φ
λ

β β
λ

φ θ θ φ

⎡ + + − ⎤⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥+ + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (45) 
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The parameters 11 211, 1, 1, 1, , , , 1, 1, 1, 1A G B H CC L L P T Y R  are shown in Equation (38). It is 
noted that P  is the cutting force acting on the slider C, τ  is the external force acting on rod 
3, and the constraint forces are expressed as: 

( ){ }1 1 2cos cos sin sin sinf D R R Lφ θ θ φ λ λ φ= + + − , 

2 2cosf S βλ= ,  

{ }3 1sin sin cos cosf R Rφ θ θ φ λ= − − .  

The control objective is to control the slider C to move periodically. Since λ → dλ  
means [ ]1 2

Tf f → dF , we chose 4.712  rad=dθ  and 15=dλ in the simulations. The initial 
position of x is 2.167 m (i.e. 0 3.1416radθ = ) for the slider C and the controlled stroke of the 
slider C are set to be 0.85 m. Substituting the slider position x into Equations (39)-(41), the 
crank angle θ  can be obtained. 
In the simulations, the responses of the crank angle showing in Figure 7(a) reach the desired 
value in about 0.9 sec. The responses of the position of slider C are shown in Figure 7(b), the 
associated control efforts τ  are shown in Figures 7(c), and the sliding surface 1s  is shown in 
Figure 7(d). The Lagrange multiplier Cλ  is showed in Figure 8(a). The constraint forces of 
joints 1-3 are shown in Figures 8(b)-(d), respectively. From Figures 7 and 8, the control 
objectives of force/motion of the quick-return mechanism are achieved successfully. 

4.3 The toggle mechanism 
For more details of the kinematic and dynamic analysis of the toggle mechanism, refer to 

[23] and adopt the generalized coordinate vector [ ]T
5 2 1θ θ θ=Q  in Equation (1) for the 

toggle mechanism shown in Figure 3. The dynamic equation can be obtained and is 
associated with the following matrices and elements:  

0 0
0   0   0C W

W W W W

A E I J
B H K L

E H C P Q R

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

GM N N    

3 2 1 1

5 5 4 1

0 cos cos
cos 0 cos( )

n

i

r r
r r

θ θ∂
θ θ φ∂

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥+⎣ ⎦⎣ ⎦

Q
 Φ (Q)Φ

 Q
 

( )
( ) ( )

5 5

3 2

1 1 4 1

sin
sin

sin sin

F r
F F r

F F r F r

θ
θ

θ θ φ

⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

C
A

B E

B E C

Q   

2 2 2 2
5 5 5 3 2 3

1 2 1 22 sin ,   2 sin  
2 3 2 3C BA m m r B m m rθ θ

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞= − + = − +⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

, 

( ) ( ) ( )
2 2

2 2 2 2 22 1 4
3 1 1 5 4 12

2

1 sin 2 sin 2 sin  
2w B C

m r rC m m r m m r
r

φ θ θ φ
⎧ ⎫⎪ ⎪= − + + + + +⎨ ⎬
⎪ ⎪⎩ ⎭

, 
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( ) ( ){ } ( ){ }5 4 5 1 5 3 1 3 1 2 2
1 12 sin sin ,   2 sin cos
2 2C W BE m m r r Q m m r rθ φ θ θ θ θ= − + + = − + , 

( ){ } { }2
3 1 3 1 2 5 5 5 5

1 12 sin sin ,   2 sin cos
2 2B CH m m r r I m rθ θ θ θ θ= − + = − , 

( ) ( ){ } 2
5 4 5 1 5 1 3 2 2 2

1 1 2 cos sin ,  {2 sin cos }
2 2C W BJ m m r r K m rθ φ θ θ θ θ θ= − + + = − , 

( ){ } ( ) ( ){ }3 1 3 1 2 1 5 4 5 1 5 5
1 12 cos sin ,  2 sin cos
2 2B w CL m m r r P m m r rθ θ θ θ φ θ θ= − + = − + + , 

 ( ) ( ) ( ) ( )2 2
3 1 1 1 5 4 1 1 1

1 {2 sin cos 2 sin cos }  
2W B CR m m r m m rθ θ θ φ θ φ θ= − + + + + +  (46) 

Where 3, 2n m= =  and 1r =  are employed in the dynamic analysis. 
For the single degree-of-freedom toggle mechanism, there exist two constraint equations as 
follows:  

 ( ) ( )
1 1 3 2

5 5 4 1

sin sin
0

sin sin
r r f

r r h f
θ θ

θ θ φ
+ −⎡ ⎤

= =⎢ ⎥+ + − −⎣ ⎦
Φ Q . (47) 

where φ  can be obtained by analyzing its geometric relation as: 

 
2 2 2

1 1 4 2

1 4
cos

2
r r r

r r
φ − ⎛ ⎞+ −

= ⎜ ⎟⎜ ⎟
⎝ ⎠

. (48) 

The positions of sliders B and C can be expressed as follows: 

 ( )
1

22 2
1 1 3 1 1cos sinBx r r f rθ θ⎡ ⎤= + − −⎢ ⎥⎣ ⎦ , (49) 

 
1

2 2 2
4 1 5 4 1cos( ) { [( ) sin( )] }Cx r r h f rθ φ θ φ= + + − + − + . (50) 

The Jacobian matrix of the constraint equation is: 

 3 2 1 1

5 5 4 1

0 cos cos
cos 0 cos( )

n

i

r r
r r

θ θ∂
θ θ φ∂

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥+⎣ ⎦⎣ ⎦

Q
 Φ (Q)Φ

 Q
. (51) 

Therefore, the matrix defined in Equation (6) is: 

 
( )4 15 2 1 1 1

1 1 1 5 5 3 2

cos cos 1
cos cos

TT r r
r r

θ φθ θ θ θ
θ θ θ θ θ

⎡ ⎤+⎡ ⎤∂∂ ∂ ∂
= = = − −⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

QL(q)
q

. (52) 

Then, differentiating Equation (52) with respect to time yields: 
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4 5 1 1 5 4 5 5 5 1
2 2
5 5

11
1 3 1 1 2 1 3 2 2 1

212 2
3 2

sin( )cos sin cos( )
cos

sin cos sin cos
cos 0

0

r r r r
r

L
r r r r L

r

θ θ φ θ θ θ θ φ
θ

θ θ θ θ θ θ
θ

⎡ ⎤+ − +
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥− ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

L(q) .
 

(53) 

The dynamic equation of the toggle mechanism, when restricted to the constraint equation 
(51), can be expressed as: 

 

( )

( )

( )

4 1

5 5

1 1
1

3 2

4 1 1 1

5 5 3 2

4 1
11

5 5

21

cos
cos

cos
cos

cos cos
cos cos

cos
cos

W

W

r
A E

r

rB H
r

r rE A C
r r

r
A L I J

r
B L K T L

E L

θ φ
θ

θ θ
θ

θ φ θ
θ θ

θ φ
θ

⎡ ⎤⎧ ⎫+⎪ ⎪× − +⎢ ⎥⎨ ⎬
⎪ ⎪⎩ ⎭⎢ ⎥

⎢ ⎥⎧ ⎫⎪ ⎪⎢ ⎥× − + +⎨ ⎬⎢ ⎥⎪ ⎪⎩ ⎭⎢ ⎥
⎧ ⎫ ⎧ ⎫+⎢ ⎥⎪ ⎪ ⎪ ⎪× − + × − +⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦

⎧ ⎫+⎪ ⎪× + × − +⎨ ⎬
⎪ ⎪⎩ ⎭

× + × +

×
( )

( )
( ) ( )

1

4 1 1 1
11 21

5 5 3 2

5 5 1 5 5

3 2 2 3 2

1 1 4 1 3 1 1 4 1

cos cos
cos cos

sin 0 cos
sin cos 0

sin sin cos cos(

W W W
r rH L P Q R

r r

F r u r
F F r u r

F F r F r u r r

θ

θ φ θ
θ θ

θ θ
θ θ

θ θ φ θ θ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎧ ⎫ ⎧ ⎫+⎪ ⎪ ⎪ ⎪+ × + × − + × − +⎢ ⎥⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ + + +⎣ ⎦⎣ ⎦

C

B E

B E C

1

2
.

)

λ
λ

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

 (54) 

The parameters 11 21, , , , , , , , , , , , ,W W W WA E B H C L L I J K T L P Q  and WR  are shown in Equation 
(46). It is noted that BF  is the friction force, EF  is the external force acting on the slider B, CF  
is the applied force acting on the slider C, and 1 5 2 5cosf r λ θ= , 2 3 2 2cosf r λ θ=  and 

3 1 1 1 4 2 1cos cos( )f r rλ θ λ θ φ= + +  are the constraint forces.  
The control objective is to regulate the position of slider B moving from the left to the right 
ends. The initial position of BX  is 0.104 m (i.e. 2 0( ) 4.712t radθ = ), and its expected position 
is 0.114 m. The desired values are ( ) 5.76d ft rad=θ  and 15dλ =  in the simulations. 
Furthermore, in order to show that the SMC is insensitive to parametric variation, the effects 
of friction forces in joints are considered in this toggle mechanism system by using the 
Lagrange multiplier method. 
The comparisons between the nominal case without considering friction forces and the case 
with friction forces are shown in Figures 9-11. Figures 9(a)-(c) show the trajectories of 
angles 1θ , 2θ  and 5θ , respectively. Figures 10(a)-(b) show the positions of sliders B and C, 
respectively. Figures 10(c)-(d) illustrate the control effort τ  and the sliding surface 1s , 
respectively. Finally, Figure 11(a) shows the Lagrange multiplier Cλ  and Figures 11(b)-(d) 
address the constraint forces 1f , 2f  and 3f  acting on the joints 1, 2, and 3, respectively. 
From the numerical results, it is found that the control efforts τ  are almost identical for both 
cases whether the friction forces are considered or not. From the above figures, the 
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force/motion control objective of a toggle mechanism using the SMC is achieved 
successfully and the system responses are insensitive to the effects of friction forces. 

5. Conclusion 
Based on the Lyapunov theorem, we successfully derived a generalized SMC algorithm in a 
simple manner. The algorithm used tracking the Lagrange multiplier error to facilitate 
controller design and proposed a separate sliding surface in terms of the displacement and 
velocity. Furthermore, some properties of the dynamic structure were presented and used to 
reduce the dynamic model equations. Finally, the slider-crank, quick-return, and toggle 
mechanisms were employed to illustrate and verify the methodology developed. From the 
numerical results, we conclude that the effectiveness in application of the developed SMC 
method is successfully verified in regards to the force/motion controls for these three 
typical mechanisms. First, fast attainment of the control objective: in the simulations, the 
three typical mechanisms reached the desired value in less than 1 second. Second, no 
overshoot in the control process: from the numerical results, the force/motion control 
objectives of the three mechanisms using the SMC were achieved successfully and the 
system responses did not overshoot in the whole control process. Third, insensitivity to 
parametric variation: the control efforts τ  are almost identical and the system responses are 
insensitive to the effects of the friction forces. 
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Appendix A 
Define the matrix ( , ) ( ) 2 ( , )CN Q Q M Q N Q Q= − , then ( , )N Q Q  is skew symmetric, i.e., the 
components jkn  of N  satisfy jk kjn n= − . 
Proof: Given the inertia matrix ( )M Q , the thkj  component of ( )M Q  is given by the chain 
rule as 

 
1

,
n

kj
kj i

ii

m
m Q

Q=

∂
=

∂∑  (A.1) 

and the thkj  component of ( , ) ( ) 2 ( , )CN Q Q M Q N Q Q= −  is given by 

 

1 1

2kj kj kj

n n
kj kj ij ijki ki

i i
i i i k k ji i

n m c

m m m mm mQ Q
Q Q Q Q Q Q= =

= −

⎡ ⎤⎡ ⎤∂ ∂ ∂ ∂⎧ ⎫∂ ∂⎪ ⎪= − + − = −⎢ ⎥⎢ ⎥⎨ ⎬
∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎢ ⎥⎢ ⎥⎩ ⎭⎣ ⎦ ⎣ ⎦

∑ ∑
 (A.2) 

Since the inertia matrix ( )M Q  is symmetric, i.e., ij jim m= , it follows from Equation (A.2), the 
thjk  component of ( , ))N Q Q  is  

 
1

.
n

ij ki
jk kj

j ki

m mn Q n
Q Q=

⎡ ⎤∂ ∂
= − = −⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
∑  (A.3) 
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Fig. 1. The physical model of the slider-crank mechanism 



 Sliding Mode Control 

 

296 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

maxCx

minCx
CMx

β

θ

φ

joint1

joint2

joint3

R

 
 
 
 
 
 
 

 
 
 

 
Fig. 2. The physical model of the quick-return mechanism 
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Fig. 5. The simulation results of the slider-crank mechanism. (‘─’desired value; ‘─’actual 
trajectory) (a) Response trajectories of the crank angle θ . (b) Response trajectories of the 
slider B in position BX . (c) Response trajectories of the control effort τ . (d) Response 
trajectories of the sliding surface 1s . 
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Fig. 6. The simulation results of the slider-crank mechanism. (‘─’desired value; ‘─’actual 
trajectory) (a) Response trajectories of the Lagrange multiplier Cλ . (b) Response trajectories 
of the constraint force 1f . (c) Response trajectories of the constraint force 2f . 



 Sliding Mode Control 

 

300 

 

0.0 0.2 0.4 0.6 0.8 1.0
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0

θd=4.712

(a)

θ 
(r

ad
)

Time (sec)  
 

 

0.0 0.2 0.4 0.6 0.8 1.0
2.0

2.2

2.4

2.6

2.8

3.0

3.2
desired XC=3.0176

(b)

X C
 (m

)

Time (sec)  
 
 

0.0 0.2 0.4 0.6 0.8 1.0
-20

0

20

40

60

80

(c)

τ 
(N

.m
)

Time (sec)  

0.0 0.2 0.4 0.6 0.8 1.0

-8

-6

-4

-2

0

(d)

S 1

Time (sec)  
 

 

Fig. 7. The simulation results of the quick-return mechanism. (‘─’desired value; ‘─’actual 
trajectory) (a) Response trajectories of the crank angle displacement θ . (b) Response 
trajectories of the slider C in position CX . (c) Response trajectories of the control effort τ . 
(d) Response trajectories of the sliding surface 1s . 
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Fig. 8. The simulation results of the quick-return mechanism. (‘─’desired value; ‘─’actual 
trajectory) (a) Response trajectories of the Lagrange multiplier Cλ . (b) Response trajectories 
of the constraint force 1f . (c) Response trajectories of the constraint force 2f . (d) Response 
trajectories of the constraint force 3f . 
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Fig. 9. The simulation results of the toggle mechanism. (‘─’desired curve; ‘---’actual 
trajectory (without friction), ‘---’actual trajectory (with friction and 0.3rf = )) (a) Response 
trajectories of the angle displacement 1θ . (b) Response trajectories of the angle displacement 

2θ . (c) Response trajectories of the angle displacement 5θ . 
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Fig. 10. The simulation results of the toggle mechanism. (‘─’desired curve; ‘---’actual 
trajectory (without friction ), ‘---’actual trajectory (with friction and 0.3rf = )) (a) Response 
trajectories of the slider C in position CX . (b) Response trajectories of the slider B in position 

BX . (c) Response trajectories of the control effort τ . (d) Response trajectories of the sliding 
surface 1s . 
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Fig. 11. The simulation results of the toggle mechanism. (‘─’desired curve; ‘---’actual 
trajectory (without friction), ‘---’actual trajectory (with friction and 0.3rf = )) (a) Response 
trajectories of the Lagrange multiplier Cλ . (b) Response trajectories of the constraint force 

1f . (c) Response trajectories of the constraint force 2f . (d) Response trajectories of the 
constraint force 3f  
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1. Introduction 
This chapter presents a Higher Order Sliding Mode (HOSM) Control for automatic docking 
between two space vehicles. The problem considered requires controlling the vehicles’ 
relative position and relative attitude. This type of problem is generally addressed using 
optimal control techniques that are, unfortunately, not robust. The combination of optimum 
control and Higher Order Sliding Mode Control provides quasi-optimal robust solutions. 
Control of attitude includes a receiver vehicle passive mode option where the pursuing 
vehicle controls the relative attitude using the active pixels of a camera viewing a network of 
lights placed on the receiving vehicle, which by sharing considerable commonality with 
manual operations allows possible human involvement in the docking process. 

2. Problem description  
The complexity of satellite formation and automatic space docking arises from the 
formulation of Wilshire equations. These equations are nonlinear and exhibit coupling of 
normal and longitudinal motions. The problem is compounded by the characteristics of the 
on/off thrusters used. Typical solutions to the problem involve application of optimal 
control. The problem with optimal control is that it is not robust and it only works well 
when a perfectly accurate dynamical model is used. This subject has been investigated 
extensively by the research community (Wang, 1999), (Tournes, 2007). Since this is a 
navigation and control problem involving two bodies, one question is how to obtain the 
measurements to be used. Of course a data link from the receiving vehicle to inform the 
pursuer about its state can be used, whereby the pursuer receives the current position 
velocity and attitude state of the receiving vehicle. One could also mount distance 
measurement equipment on the vehicles such as a Lidar to provide accurate range and 
range rate measurements. The exchange of attitude represents a larger challenge, as the 
relative motion will be the difference of the measurements/estimations by separate Inertial 
Measurement Units (IMU) of their attitude. Such a difference will contain the drift and the 
noise of two IMUs. 
The transversal aspect of this chapter presents lateral and longitudinal guidance algorithms, 
based on measurements of range and range rate without regard to the source of these 
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measurements which could be provided by a Lidar system (Tournes, 2007) or interpreted 
from visible cues using a pattern of reference lights. 
 
 

 
Fig. 1. Notional vehicle. 
The attitude aspect presents a workable solution that does not require any reporting by the 
receiving unit and is based on a pattern of reference lights, that when viewed by the pursuer 
would allow the latter to evaluate the relative attitude orientation error. The quaternion 
representing the relative attitude is estimated in real time by a nonlinear curvefit algorithm 
and is used as the feedback of a second order sliding mode attitude control algorithm. 
For simulation purposes, we assumed the pursuing vehicle (as shown in Fig. 1) to be similar 
in characteristics to ESA’s Automated Transfer Vehicle (ESA 2006). Its initial mass is 10000 
kg. It is equipped with a main / sustainer orientable thruster providing 4000 N thrust. 
Twenty small thrusters of 500 N are used by pairs to steer roll, pitch, and yaw attitude as 
well as lateral and normal motion. Regarding axial dynamics, we assume that several axial 
thrusters could be used to achieve axial deceleration. We assume that using all of them 
would provide a “maximum” braking; using half would provide a “medium” breaking; and 
using a quarter would provide “small” braking. A major goal in the study was to obtain 
extremely small velocity, position and attitude errors at the docking interface. 

3. Governing equations and problem formulation 
Equations governing the relative motion of the pursuer with respect to the pursued vehicle 
are along in-track, out of plane and normal axis represented by Wilshire equations 
(Chobotov, 2002). 

 
( )2( )

sv T

sv T

sv m

= +

= + + × + × + × ×

= + =

r r ρ
r r ρ ω ρ ω ρ ω ω ρ

Fr g g +Γ

ρ = Γ + f(t)

�� �� �� � �

��

��

 (1) 

Where , ,sv Tr r ρ  represent respectively the space vehicle position pursued vehicle position 
and relative position vectors; , gΓ  are the thrust and gravity accelerations. 
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Fig. 2. System of axes used. 

3.1 Translational dynamics 
The system of axes used is shown in Fig. 2. Equation (1) is linearized, assuming that the 
thrust F is aligned with the pursuer longitudinal axis. Expressing the three components of 
gravity vector g as function of the pursuer position vector, one obtains  
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+
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 (2) 

Where x, y, z are relative coordinates; ω  is a rotational speed of a frame connected to the 
pursued vehicle, μ represents the gravitational constant. Functions: (.)xf , (.)yf , (.)zf  
represent the effects in Eq. (1) other than caused by thrust and are treated as disturbances. 
They are smooth functions which tend to zero as the vehicles get closer. When variable 
attitude mode is in effect, Eq. (2) is generalized to a form 

 2 2 21 1 (.); 1 (.); (.)y z x x z y y z zx f y f z fδ δ δ δ δ δ= Γ − − + = Γ − + = Γ +�� �� ��  (3) 
 

Here, F mΓ = ; F  (the magnitude of the thrust) can take three discrete values, the vehicle 
mass m varies slowly with time, xδ can take discrete values 1,-0, 1. Pursuer pitch and yaw 
attitude angles are defined as ( )zasinθ δ= and 2( 1 , )x y yatan2ψ δ δ δ= − respectively. 
When fixed attitude mode is in effect, Eq. (2) is written as: 

{ } { } { }(.) ; 1,0,1 ; (.) ; 1,0,1 ; (.) ; 1,0,1z z z y y y x x x
F F Fz f u u y f u u x f u u
m m m

= + = − = + = − = + = −�� �� ��  (4) 

3.2 Attitude dynamics 
The body attitude is represented by quaternion (.)

bodyQ the dynamics of which is governed by 
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Where (.) represents some non rotating reference, i.e. Earth Centered Inertial and Where p, q, 
rr represent the body rates expressed in the body frame. An alternate notation, using 
quaternion multiplication (Kuipers, 1999) is: 

(.) (.)
body body=Q Q Ω�  

 The dynamics p, q, rr are governed by 
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 (6) 

Where I represent the vehicle matrix of inertia, Ω the rotation matrix in body axes and 
, , , , , , ,p q p q cg p q rrF F r x x δ δ δ represent respectively roll, pitch/yaw thruster maximum force, roll 

thrusters radial position, pitch/yaw thruster axial position, and corresponding normalized 
control amplitudes in roll, pitch and yaw. 

3.3 Problem formulation 
3.3.1 Lateral control: The control must steer the vehicle position to the prescribed orbital 
plane and orbit altitude. For that matter during the initial rendezvous, out-of-plane and 
relative orbit positions with respect to pursued vehicle are calculated at the onset of the 
maneuver. The HOSM lateral trajectory control calculates required acceleration to follow the 
desired approach profile and calculates the required body attitude represented by 
quaternion (.)*bodyQ  . During subsequent drift, braking and final docking phases the pursuer 
is maintained in the orbital plane and at the correct altitude by means of on-off HOSM 
control applied by the corresponding thrusters. 
3.3.2 Longitudinal control: During initial rendezvous the pursuer accelerates using the main 
thrust/sustainer. Corresponding thrust is shut down when the pursuer is in the orbital 
plane, has attained the pursued vehicle’s orbit altitude and desired closing rate. During the 
drift segment no longitudinal control is applied. The braking segment begins at a range 
function of the range rate. Following coast, braking is applied until reaching the terminal 
sliding mode condition. On-off deceleration pulses are then commanded by the HOSM 
longitudinal control. 
3.3.3 Attitude control: During the initial rendezvous, continuous HOSM controls the 
attitude such that (.) (.)*body body→Q Q where (.)

bodyQ represents current body attitude. During 

following segments the pursuing vehicle regulates its body attitude so that 

(.) (.)#body body→Q Q where (.)#bodyQ represents the attitude of the pursued vehicle. 
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4. Why higher order sliding mode control 
HOSM control is an emerging (less than 10 years old) control technique (Shtessel, 2003), 
(Shkolnikov, 2000), (Shtessel, 2000), (Shkolnikov, 2005), (Tournes, 2006), (Shtessel, 2010) 
which represents a game changer. It should not be confused with first order sliding mode 
control which has been used for the last 30 years. Its power resides in four mathematically 
demonstrated properties: 
1. Insensitivity to matched disturbances: Consider a system of relative degree n, with its 

output tracking error dynamics represented as: 

 ( ) ( , )nx f x t u= −  (7) 

where ( , )f x t  represents some unknown disturbance. A convergence function 
( 1)( , ,.. )nu C x x x −= �  is selected so that the output tracking error x  in Eq. (7) and its 

consecutive derivatives up to degree 1n −  converge to zero in finite time in the presence of 
the disturbance ( , )f x t  provided that ( , )f x t M<  is bounded. In this application, such a 
bound exists (Chobotov, 2002), (Wang, 1999). This property of HOSM control is inherited 
from classical sliding mode control (SMC). Being implemented in discrete time, the output 
tracking error is not driven to precisely zero but is ultimate bounded in the sliding mode 
with sliding accuracy proportional to the kith power of time increment tΔ . This property 
makes HOSM an enhanced-accuracy robust control technique applicable to controllers and 
to observer design. 
2. Dynamical collapse: Unlike traditional control techniques that seek asymptotic 

convergence, HOSM achieves finite time convergence in systems with arbitrary relative 
degree, just as classical SMC achieves the same result for the system with relative 
degree one. This is much more than an academic distinction; it means that when the 
sliding mode is reached the effective transfer function of inner loops with relative 
degree greater than one becomes an identity. 

3. Continuous / smooth guidance laws: HOSM controllers can yield continuous and even 
smooth controls that are applicable in multiple-loop integrated guidance/autopilot 
control laws.  

4. Continuous / Discontinuous actuators: HOSM techniques are nonlinear robust control 
techniques. When discontinuous actuators such as on-off thrusters must be used, all 
linear control laws require a re-design into a discontinuous control law that 
approximates the effects of the initial control law. HOSM design produces directly, 
when need arises, a discrete pulse width modulated control law that achieves the same 
level of accuracy as a linear control law. 

5. Docking strategy 
It is assumed in Fig. 3 that the automatic docking starts at a relatively large distance (>40-50 
km). The pursuer, during Initial Rendezvous manages using its main thrust / sustainer to get 
in a coplanar circular orbit with altitude equal to that of the receiving vehicle, but with a 
slightly higher longitudinal velocity. Maintaining this altitude will require infrequent 
thruster firings by the pursuer. Alternately, one could place the pursuer on a circular 
coplanar orbit consistent with its longitudinal velocity and design the control law to track 
the orbit associated to its current velocity which “in time” will end up being the same as the 
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Initial rendezvous
Drift segmentFinal docking

 
Fig. 3. Docking strategy. 

pursued vehicle altitude. During the initial rendezvous, the pursuing vehicle is set to the 
desired drift velocity relative to the pursued vehicle. This maneuver is represented by 
trajectory 0-1-2 in the phase portrait of Fig. 4. During this initial segment, a varying attitude 
mode is applied. The transition from variable attitude to fixed attitude takes place when the 
normal and out-of plane errors become lower than a prescribed threshold defined as 

 2 2 2 21 ( ); 1 3V y z y z V ε= + + + <� �  (9) 

 

x
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4

5

(Large thrust)
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drift
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06 
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Fig. 4. Longitudinal control strategy. 

During the drift segment, normal and lateral control is applied to keep the pursuer vehicle 
at the prescribed altitude and in the prescribed plane. The drift motion (2-3) begins with  
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 2 2 2 2 2 2( );V x y z x y z V ε= + + + + + <� � �  (10) 
 

The end of the drift segment is calculated using Pontyagyn’s Principle of Maximum. Three 
switching surfaces are defined as: 
 

 
2 2 2

1 2 3

( ) ( ) ( ) ( ) ( ) ( )1 ; 2 ; 3
2 2 2

sign x x m t sign x x m t sign x x m tSW x SW x SW x
F F Fα

= + = + = +
� � � � � �

 (11) 

 

Large, medium, or small thrust is applied as thresholds 1, 2, 3SW SW SW are reached 
depending on the braking strategy used and this thrust is applied until the distance from the 
terminal switching surface becomes small enough. At that point, the terminal thrust is shut 
down. The termination of the decelerating maneuver is governed by 
 

 2 ; 2x xx xσ σ ε= + >�  (12) 
 

Once (12) is satisfied, terminal docking begins: radial and out-of-plane errors are almost null 
and the only disturbance left is radial with a magnitude (.) 2zf xω= − �  and this has already 
been greatly reduced by previous in-track braking.  

6. HOSM design of the relative navigation 
6.1 Normal / Lateral control during initial rendezvous 
During the initial phase of the rendezvous, the pursuing vehicle is steered by the continuous 
orientation of its main thruster/sustainer. We select the relative normal / lateral positions as 
the sliding variables. Given that the ultimate objective of this initial rendezvous is to set the 
pursuing vehicle in an orbit coplanar to the pursued vehicle’s orbit and at the same altitude, 
we define (.)* ( ) ; (.) ,z t radial out of plane= to be a profile joining initial pursuer vehicle with 
its terminal objective, this profile is designed to be terminally tangent to pursued vehicle 
orbit. The initial rendezvous objective is thus, to steer the pursuer trajectory so 
that (.)( ) * ( )z t z t→ . Sliding variable is chosen as: 

 (.) (.) (.)*z zσ = −  (13) 
 

Applying the relative degree procedure, we differentiate twice the sliding variable before 
the control appears, with Eqs. (4, 13) we obtain a dynamics of sliding variable of relative 
degree two. 

 
(.) (.)

(.)
(.) (.) (.) (.)

; (.) ,

(.);

d bu z y
F

d z f b
m

σ = −

= − =

��

��
 (14) 

 

Consider sliding variable dynamics given by a system with a relative degree two. 

 ( , , ) ( ) , ( ) 0h t k t u k tδσ σ σ= + >�� �  (15) 
 

In the considered case, the controls are continuous. Define auxiliary sliding surfaces (.)s as 
dynamical sliding manifolds 
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1/2

(.) (.) (.) (.)

(.) (.) (.)

( )

0 , 0

s sign

s

σ ϖ σ σ

σ σ

= +

→ ⇒ →

�

�
 (16) 

 

As the sliding manifolds are relative degree 1 with respect to the system, the controller is 
now relative degree 1 with respect to the sliding manifold. The corresponding Super-Twist 
controllers are given by: 

 [ ]
1/2

(.) (.) (.)
0

( ( ) ( )0.5,0.5 (.)
t

Limit sign sign du s s sα β τ= − −− ∫  (17) 

 

Where the Limit [,] is imposed because the relative attitude with respect to the trajectory 
must be bounded such as to leave enough longitudinal control authority to steer the 
longitudinal relative motion. 

6.2 Normal / Lateral control during fixed attitude mode 
After reaching the prescribed altitude and the prescribed orbital plane, normal/lateral on-
off thrusters are used to keep the pursuing vehicle at the proper altitude and in the orbital 
plane.  
With ( )m Mk k t k< <  and ( , , )h t Lσ σ ≤� ; it is shown (Edwards, 1998), (Utkin, 1999), (Levant, 
2001), (Shtessel, 2003), (Shkolnikov, 2000), (Shtessel, 2000) that a sliding variable σ  given by 
(10) is stabilized at zero altogether with its derivative σ�  in finite time by means of the 
SOSM controller  

 0.5( ( )), 0, 0u sign signρ σ λ σ σ λ ρ= − ⋅ + > >�  (18) 
 

where ( )20.5 / ML kρ λ> + . This controller is called a second order sliding mode controller with 
prescribed convergence law. It is worth noting that the high frequency switching SOSM 
controller (18) achieves the finite time stabilization of σ  and σ�  at zero in the presence of a 
bounded disturbance ( , , )h tσ σ� .  
Controller (18) yields on-off control that can be applied directly to the on-off thrusters. Here 
we choose 8 /secradλ = , and 20.1 /m sρ =  is imposed by the acceleration achieved by the 
on-off thrusters. 

6.3 Simulation 
The Six Degrees of Freedom simulation was ran in Earth Centered Inertial Coordinates over 
rotating spherical Earth1. Attitude motion was calculated using Quaternions representing 
the body attitude with respect to ECI frame2. The simulation was calculated in normalized 
units with unit of length being the equatorial radius, the unit of velocity the circular velocity 
at the surface level, and the time unit the ratio of previous quantities. The results are 
presented in SI units and the gains used in normalized units converted to SI units. 
                                                 
1 The simulation could be easily extended to work over oblate Earth. However since the problem is a 
problem of relative motion, this easy extension was not considered 
2 The problem to solve is a problem of relative attitude, and for that matter any other reference could 
have been chosen such as North East Down. 
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Integration step used was 10-6 normalized time units that is about 0.000806 sec. The 
integrations were performed using Runge-Kutta 4 algorithm build in the Vissim simulation 
software.  
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Fig. 5. Normal position and velocity error. 
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Fig. 6. Vehicle relative pitch attitude error. 
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The results Fig. 5 show that after the initial rendezvous normal/lateral distances to the 
receiving vehicle’s orbit are kept within millimeters, millimeters /sec. Figure 6. depicts the 
corresponding vehicle attitude. 
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Fig. 7. Activity of the small thrusters. 
The result Fig. 7 exhibits thruster commands during an important interval of activity in the 
segment 114-930 sec. The interval 114-537 corresponds to the drift segment during which the 
pursuing vehicle is at the same altitude that the pursued vehicle but has larger velocity by 
approximately 40 m/s. The interval 537-936 records deceleration to a much smaller 
longitudinal relative velocity. From there, as the longitudinal velocity is constantly reduced, 
the firing of normal thrusters becomes more and more infrequent. Conversely the activity of 
transversal thrusts reduces much more rapidly as this error is driven to zero. 

6.3 Longitudinal control during terminal sliding mode phase 
The prescribed longitudinal relative motion is defined by sliding variable 
Figure 6. displays the corresponding vehicle normal and lateral (out-of-plane) thrusters’ 
activity. 

 x x cxσ = +�  (20) 

When the longitudinal sliding surface is reached (when 0xσ ≈ ), this forces the longitudinal 
velocity to reduce as the range becomes smaller. Using this surface the pulse width 
controller is given by 

 

1 2

0

( ) ( ) ; ( )

( ) (1 , ) 0.5 (1, )
( , ) ,

t

x x x x x xw Asign B sign d u wPWM

PWM u DeadBand u Triangle
Triangle A f triangular wave amplitude A frequency f

σ σ σ τ

ν ε

= − − =

= − + +
= = =

∫
 (21) 
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6.4 Longitudinal breaking strategies and gates 
Several control strategies have been analyzed which use braking maneuvers of different 
intensity and duration. We present hereafter the medium breaking strategy. 
 

 
Fig. 8. Longitudinal control strategy 2 medium breaking. 
Longitudinal control starts at point 1, the beginning of initial rendezvous. The pursuing 
vehicle accelerates using the main thruster / sustainer until point 2 when the relative 
prescribed closing velocity is reached. This point is selected such that a 15% duty cycle of 
small thruster deceleration would be required to steer the relative position and velocity 
approximately to zero. It is followed by a drift segment until reaching the second breaking 
curve at point 3, represented by a medium breaking stategy biased by some positive range. 
The medium deceleration is applied from 3-5 until reaching the sliding surface. From 5-6 the 
longitudinal motion is governed by the linear manifold Eq. (12). 
Results in Fig 9 show the variation of longitudinal range and range rate as functions of time. 
One can note that after significant initial variations in range and range rate, their values 
decrease asymptotically after reaching the sliding surface at t=914. 
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Fig. 9. Longitudinal control. 
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Results Fig. 10 show the absence of longitudinal control during the “drift” segment and also 
the continuous application of the “medium” deceleration from 700-796 sec. Results in Fig.10 
show the pattern of longitudinal thrust. Starting on the left, one can note the sustainer thrust 
followed by the drift segment where no longitudinal thrust is applied, the deceleration 
pulse, then the deceleration segment where braking thrust is applied continuously; 
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Fig. 10. Longitudinal thruster activity. 

Results Fig. 10 also show the absence of longitudinal control during the “drift” segment and 
the continuous application of “medium” deceleration from 700-796 sec. Results in Fig. 10 
show the pattern of longitudinal thrust. Starting on the left, one can note the sustainer thrust 
followed by the drift segment where no longitudinal thrust is applied, the deceleration 
pulse, then the deceleration segment where braking thrust is applied continuously; 
thereafter, the firing becomes sparser and the durations of the thrust pulses smaller, and 
reaches ”soft kiss” conditions with range and range rate in the sub-millimeter and 
millimeter / sec. It is possible to make the docking faster by modifying parameter c in 
Eq. (20) and to interrupt it sooner as docking tolerances are reached. Another factor that 
may be considered in the automatic docking is the incorporation of cold gas thrusters to 
provide small and clean propulsive increments for final docking. 
Three gateways are designed to check that the automatic docking is on track; equivalently, 
that provided the interceptor position is within the gate, docking can be pursued safely; 
specifically, that the margin of error they define can be corrected safely with available 
control authority. 
For that matter we are going to present the gates from final to initial. 
The third gateway is defined at the beginning of the deceleration The outer range is the 
minimum range such that if small thrusters are applied continously, the deceleration will 
achieve a zero velocity and distance from the receiving station. The deceleration must begin 
at the latest when intersecting the outside elliptical contour. The inner contour represents 
the minimum time for driving the longitudinal sliding variable to zero. The terminal 
deceleration in sliding mode must be initiated before reaching the inner contour. 
At point 3 of Fig. 11, the pursuing vehicle begins medium braking, segment 3-5. Point 4 is at 
the intersection with the contour where there is enough stopping power to overcome the 
disturbances and stop at the origin using the small break. The breaking maneuver with 
small break must begin at the latest at point 4. The point 5 is designed to be on the 
intersection of the sliding manifold Eq. (12), with the small braking biased contour. 



Automatic Space Rendezvous and Docking using Second Order Sliding Mode Control  

 

319 

Evidently, the point 5 must be outside the inner elliptical contour that defines the minimum 
time needed to drive the terminal sliding surface to the origin. 
 

 
Fig. 11. Third gate. 
The second gate Fig. 12 defines the drift segment. It begins at point 2; the intersection of the 
drift segment with SW3 and it ends at point 3 the beginning of the braking maneuver on 
biased SW5. 
 

 
Fig. 12. Second gate. 
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The first gate (Fig. 13) defines the initial contour where the interceptor must be in the phase 
plane to intersect the small partial thrust SW3 with a viable drift velocity value and suffcient 
drift time. In any case the initial point 1 must be above SW3 and there is some latitude 
regarding the initial velocity and range. 
 

 
Fig. 13. First gate. 

7. Use of active bitmap pixels to control relative attitude 
Regulation of pursuer attitude for automated docking can be broken into two functional 
segments. While the objects are far apart, the pursuer’s attitude is controlled to align its axial 
direction with the relative line of sight and to place its normal direction in the orbital plane. 
Control during this segment has been done many times and is not the subject of this 
discussion. When the objects are very close, and before docking can occur, the pursuer must 
align its mating surface with that of the pursued vessel. In this section, we discuss one 
practical method that this alignment can be performed efficiently, reliably and 
automatically. 
Any geometry will do, but suppose that both mating surfaces are circular and that the target 
object is fitted with a series of detectable objects (i.e. lights) equally spaced around the 
mating surface. Suppose further that the pursuer is fitted with an array of suitable detectors 
which we shall call the Focal Plane Array (FPA) and that this FPA can be considered to lie in 
the center of its mating surface. As described in figure 14, if the surfaces are ready for 
docking, the pursuer will perceive a circular ring of lights in the center of the FPA. If the 
surfaces are offset, then the ring will be offset on the FPA. If the surfaces are misaligned, the 
ring will be elliptical rather than circular. The apparent size of this perceived ring of lights 
will indicate separation distance; the center will indicate normal and lateral error; the 
eccentricity of the ellipse will indicate the degree of angular error; and the orientation of the 
ellipse will indicate the relative axis about which the pursuer must rotate for successful 
docking. Although we will not address relative roll in this chapter, if one of the lights is 
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distinct from the others, a roll error could also be deduced. This is nearly equivalent to the 
information a human pilot would use to accomplish the same task. 
Automated control of attitude for docking is thus reduced to two necessary tasks. First, 
information from the FPA must be interpreted (in the presence of noise) to yield a real-time 
measure of attitude error. Second, that error must be used to correctly orient the vehicle. We 
will apply a nonlinear least-squares curvefit and multidimensional search to the corrupted 
pattern of lights in order to estimate the equation of the perceived ellipse. The relative 
magnitude and orientation of the semi-major and semi-minor axes of this ellipse are used to 
generate a necessary angle of rotation and the unit vector we must rotate about, 
respectively. The relative degree approach will be used to generate a second-order sliding 
mode controller of the type described in (Levant, 2003). Finally, these methods will be 
implemented and tested using simulation. 
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Fig. 14. Use of light patterns to extract relative position and attitude.  

7.1 Mathematical background: Quaternions 
The idea of relating two oriented surfaces (equivalently, two reference frames) by a single 
rotation about a specified axis is precisely the motivation behind the concept of quaternions. 
Since many readers will not be familiar with quaternions, we introduce a few important 
concepts here. Those wishing to understand quaternions in greater depth are referred to Dr. 
Kuipers’ excellent book (Kuipers, 1999) on the subject. 
Let us describe the relationship between two right-hand coordinate systems as a single 
rotation about a specified axis. Let us package this description into a 4-vector as follows: 
 

 [ ]
cos

ˆ ˆsi n ( )
themagnitudeof rotation

the unit vector torotate about
η η
η

=⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ =⎣ ⎦⎣ ⎦

Q
u u

0q
q

 (22) 

 

It is easily verified that this construct has (Euclidian) norm 1. If we define multiplication of 
these objects in a particular way, they exhibit several useful traits. Define: 
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 0 0 0 0PQ = p q - p q + p q + q p + p×qi  (23) 

The following four useful and remarkable properties hold: 

1. For any quaternion Q, [ ]0 0 1 0 0 0 t⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

* *q q
QQ Q Q

q q
 and this is the 

quaternion relating any coordinate frame to itself. 

2. Given a vector v in the initial reference frame, the vector part of *0⎡ ⎤
⎢ ⎥
⎣ ⎦

Q Q
v

 is the 

equivalent vector in the rotated frame. 
3. Given quaternion P relating frame 1 to frame 2 and quaternion Q relating frame 2 to 

frame 3, the product QP is the quaternion relating 1 to frame 3. 

4. If Q is the quaternion relating frame 1 to frame 2 and 
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

pp
Ω = qq

rr
 represents the turning 

rate of frame 1 relative to frame 2 (i.e. the body rates) then 
0⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Q Q�
Ω

 

7.2 Attitude error from FPA measurements 
In this exercise we are assuming that the pursuer’s on-board sensor is the only source of 
attitude feedback. Specifically, this information takes the form of a set of Cartesian positions 
on the FPA corresponding to the location of the docking lights; with the detectors on the 
FPA working in the same way as rods on a human retina. Our challenge is to interpret, from 
this list of positions, the relative orientation of the pursuer and target docking surfaces. 
As discussed in the introduction, if the docking surfaces are not perfectly adjusted, a circular 
pattern of indistinguishable lights (Fig. 15a) will appear as an offset ellipse (15b). 
 

 
Fig. 15a. Circular pattern of docking lights. 
Lateral and longitudinal guidance was described earlier in this chaper; thus we are only 
concerned that the pursuer’s attitude be modified such that the percieved ellipse become 
circular. We proceed in two steps: first determine the equation of the ellipse that most nearly 
fits the measurements; then compute attitude error from this equation. 
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Fig. 15b. Docking lights as seen by pursuer. 

The formal equation of an offset, rotated ellipse is: 

 ( ) ( )( ) ( ) ( )( )2 2

2 2

cos sin sin cos
1c c c c

y z

y y z z y y z z
l l

φ φ φ φ− + − − − + −
+ =  (24) 

To perform least-squares curvefit from a set of measured points (x,z), define a function: 

( ) ( )( ) ( ) ( )( )
22 2

2 2

cos sin sin cos
1 c c c c

all lights y z

y y z z y y z z
E

l l
φ φ φ φ⎧ ⎫− + − − − + −⎪ ⎪= − +⎨ ⎬

⎪ ⎪⎩ ⎭
∑  (25) 

We will find a local minimum value of E with respect to the parameters { }, , , ,c c y zy z l l φ using 

the steepest descent method: 
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 (26) 

with the ad-hoc addition that, if E E+ −>  then 
10
ρρ ← . This iteration is allowed to continue 

until the function E converges to a constant value at which the parameters describing the 
“best-fit” ellipse are established3. 

                                                 
3 The multivariate search described above requires an initial guess for each parameter. Convergence rate 
is sensitive to this guess and to the initial step size ρ. Furthermore, if care is not exercised, this search 
may converge to a local (and not global) minimum. An extensive discussion of multivariate search 
isoutside the scope of this chapter. outside the scope of this chapter. 
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The magnitude of rotation necessary for the ellipse to appear circular is described by: 
 

                 
cos cos ll l a

l
η η= ⇒ = z

z y
y  

The required axis of rotation is the ellipse semi-major axis, which is described by: 

 ˆ ˆ ˆcos sinφ φ= +u y z  (27) 

The quaternion relating the pursuer’s attitude to that necessary for docking is, therefore: 
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Q  (28) 

7.3 Derivation of the attitude control law 
The relative degree approach to derivation of a control law consists of a sequence of general 
steps. First, establish an approximate mathematical model for the object to be controlled. If 
(as is always the case) this model is imperfect, we include an unknown “disturbance” 
function into which all of the uncertainties, approximations and unknowable quantities are 
swept. Second, the feedback error is defined. This error must be generated from measured 
quantities and must be positive definite. In the third step, a mathematical relationship is 
established between the feedback error and the actual control. This relationship is made to 
fit a template equation that is well-behaved in the presence of the expected disturbance. 
Finally, the relationship is solved to describe the necessary control in terms of the feedback 
error, possibly other measured quantities and the disturbance, which is discarded. 
Let Q represent the quaternion relating the pursuer body frame to the required attitude for 
docking as computed in (24). In practice, the pursued vehicle may be rotating, but because 
we derive all our information from the pattern of docking lights, the pursued vehicle’s 
rotation is confounded with the pursuing vehicle’s rotation and is thus unknowable. 
Therefore we shall consider the desired attitude to be an inertial frame and consider any 
error resulting from this supposition to be part of the disturbance function. Further define: 

pp
qq
rr

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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Q,ω  is the vector of the pursuer’s body rates 
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3 3x∈I \  is the pursuer’s matrix of inertia, which is considered nonsingular 
3 3

3

x⎧ ∈⎪
⎨

∈⎪⎩

B

u

\

\
such that Bu represents the moment contribution of control in the body axis 

The equations of state may be described as: 
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�
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ω

ω ω ω
 (29) 

For docking, we want the pursuer’s body frame to align with the desired frame; this is 

equivalent to driving [ ]1 0 0 0 t→Q . Because Q has norm 1, driving the vector part to 
zero will accomplish this desire. If we consider desired rotation about the body x-axis to be 
zero and restrict the remaining axis of rotation to quadrants 1 and 2 (accounting for the 
direction of rotation by other means) taking feedback error to be the vector part of Q results 
in a positive definite function. Therefore, with obvious notation, let: 

 [ ]123= Qσ  (30) 

ignoring disturbances and differentiating: [ ]123= Qω�σ  

 [ ] 1 1
123 123

( )− −⎡ ⎤= + = + − × +⎣ ⎦QQ Q QQ Q I I I Bu���σ ω ω ω ω ω  (31) 

Before proceeding, we will need the following theorem: 

 Theorem: For quaternions [ ] [ ]
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Proof: from Kuipers (p.108): 
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Define: 

( )1/2
1,2,3 1,2 ,3 1,2,3 1,2,3( , ) ( )signρ μ= − σ + σ σS SIGN� �σ σ where ρ and μ are positive constants. (33) 

It is shown [26] that the equation: ( , )− =S�� �1,2,3 1,2,3 1,2,3σ σ σ Δ  is finite-time stable and displays 
“good” transient behavior in each of its three elements so long as elements of the disturbance 
Δ are bounded by the proportionality constant ρ. Substituting for the second derivative in (31): 
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1 1
123

( )− −⎡ ⎤= + − × +⎣ ⎦S QQ Q I I I Buω ω ω  

Pre-multiply both sides by *Q and apply the theorem: 

[ ] ( )1 1
123 123

− −⎡ ⎤= + − × +⎣ ⎦
* * *Q S Q QQ Q Q I I I Buω ω ω  

[ ] [ ]2 2 1 2 1
0 0 0 0123 0123 123

( ) ( )− −⎡ ⎤ ⎡ ⎤= + − × +⎣ ⎦ ⎣ ⎦
* *Q S q Q q Q Q q I I q I Buω ω ω ω  

Solve for the control u: 

 [ ] [ ] [ ]1 10
2 123 123123 00

1 ( )
q

− −⎧ ⎫⎪ ⎪⎡ ⎤= − + − ×⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭

* Q
u B I Q S Q Q I I

q
ω

ω ω ω  (34) 

7.4 Simulation results 
In order to demonstrate this method of attitude control for automated docking, a ten-second 
interval near the end of a docking mission was simulated. The initial separation is 11 m and 
the closing velocity is 1 m/sec. Lateral and longitudinal control are not included in this 
exercise, nor is roll attitude. Initially, the docking surfaces are misaligned by .1 radian 
(~6 degrees) in the pitch direction and .25 radians(14 degrees) in yaw. Additionally, we have 
initial body rates equal to .05 rad/sec away from zero in the pitch and .1 rad/sec towards 
zero in yaw. Realistically, seeker error would decrease as the surfaces approach, but for 
demonstration purposes, a uniformly-distributed 5% error was added to the y- and z-
positions of each docking light. 
The gains ρ and μ of Eq. (33) were empirically set to 5 and 0.25, respectively; these gains 
were intentionally not fine-tuned and it was observed that acceptable behavior is exhibited 
when either or both of these are halved or doubled. 
Results are summarized in Figs. 16 – 18. 
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Fig. 16. Characteristics of the curvefit ellipse. 
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In Fig. 16 we observe that the (normalized) semi-major axis length is constant at unity. This 
is necessary, as the apparent length (adjusting for changes in proximity) does not change 
with aspect. The semi-minor axis length is initially somewhat less, but quickly converges to 
one; this is an indication that the percieved ellipse becomes a percieved circle. At about the 
time the semi-minor axis approaches unity, the apparent rotation of the ellipse becomes 
chaotic. This is expected – as the FPA image becomes more circular, definition of the semi-
major and semi-minor axes is largely determined by noise.  
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Fig. 17. Quaternion elements 2 and 3. 
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In Fig. 17 we observe that the sliding variables are driven into a narrow band about zero in 
finite time and remain within that band thereafter. Note that actual convergence to the 
sliding surface occurs significantly after the quaternion axis (green line of Fig. 16) becomes 
chaotic. It is apparent that the averaged reaction to extremely noisy feedback is still useful 
for control. If the seeker noise was correlated in time, we might expect to see a small and 
persistent error away from zero. 
Euler angles are easily extracted from the quaternion elements. In Fig. 18 we see the pitch 
misalignment, which started nearer to zero converge first, followed by yaw. After the 
transient, both angles are constrained to within about 3 or 4 milliradians (0.2 degrees). 
Speed of convergence and ultimate boundary are largely dictated by the gains ρ and μ of 
Eq. (33), subject to limitations on thruster force and the need to dominate the sum of all 
disturbances. 

7.5 Observations 
Before concluding this section, let us make some interesting and important observations 
concerning the demonstrated method for automatic control of attitude for docking. 
First, this automated method is very similar to the approach taken by a human pilot; rather 
than assembling position and attitude information from a variety of sources, computing a 
time profile and inverting the physical model to produce attitude commands, this method 
“sees” that the ring of docking lights is slightly out of round and nudges the controls in 
response. This not only increases confidence in the robustness of our method, but introduces 
the possibility of Human Assisted Control (HAC) for docking attitude. 
Second, there is no Inertial Measuring Device (IMU) input involved in this method. This 
means no IMU errors, no acquisition and processing of IMU data, no synchronization of 
IMUs between the pursuer and pursued and no provisioning for loss of data. All feedback is 
from a single, reliable on-board source. On a related note, there is no participation required 
on the part of the pursued object and no communication requirement. This is extremely 
favorable because communication increases risk and always introduces delay. Delay is 
extremely detrimental to sliding mode control, which is fundamentally based on high-
frequency switching. 
Finally, the reader may have spotted a significant flaw in our method. When interpreting the 
ring of docking lights as an ellipse on the FPA, the magnitude of rotation and the axis of 
rotation can be determined, but there is no inherent way to determine the direction of 
rotation. In other words, we cannot tell if the ellipse is tipped “towards” us or “away”. This 
perceptive reader is correct; some other method such as Doppler ranging or a comparison of 
the relative brightness on each side of the semi-major axis must be used to supply this final 
bit of information. While generating the results of Figs. 16-18, we assumed that the 
directionality was known and correct. 

7.6 Conclusion: Attitude control 
It is possible to control relative attitude by simply constructing a quaternion error function of 
the pattern of lights. One must note that the algorithm process is very similar to the human 
control processes in that the idea is to drive errors to zero. These solutions are enabled by the 
property that sliding mode controllers are perfectly insensitive to matched disturbances. Using 
this property it is possible to not represent explicitly in the design some dynamical terms of the 
sliding variable dynamics and to treat them simply as disturbance terms. 
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8. Chapter conclusion 
The simplicity and elegance of the solution is a unique attribute of this emerging technique 
which makes it a game changer. Proposed design could conciliate the optimality of bang-bang 
solutions which are not robust with the robustness of HOSM which is not optimum. The 
result is a very simple design that conciliates a quasi-optimality with a perfect robustness. 
The insensitivity property of HOSM controllers to matched disturbances allowed to treat all 
the dynamical effects other than caused by the control to be treated as disturbances and 
compensated implicitly. Likewise for the attitude motion where by treating all dynamical 
effects other than the torques created by attitude command thrusters the three attitude 
motions could be treated as explicitly de-coupled4 which greatly simplified the design of the 
control. Finally by running the simulation for a very long duration we showed that final 
results of extreme accuracy could be achieved. 

9. References 
W. A. Chobotov. (2002). Orbital Mechanics (3rd Ed.). AIAA Educational Series, Reston VA. pp. 

155-158. 
C. Edwards. And S. Spurgeon S. (1998). Sliding Mode Control: Theory and Applications.  
Taylor & Francis, Bristol. ESA (2006) Document No. EUC-ESA-FSH-003 REV-1.2. 
L. Fridman, Y. Shtessel, C. Edwards, and X. G. Yan. (2008). Higher Order Sliding Mode 

Observer for State Estimation and Input Reconstruction in Nonlinear Systems. 
International Journal of Robust and Nonlinear Control, Special Issue on Advances in 
Higher Order Sliding Mode Control, Vol. 18, Issue 4-5 (March). pp. 399-412. 

C. Hall and Y. Shtessel. (2006). Sliding Mode Disturbance Observers-based Control for a 
Reusable Launch  Vehicle. AIAA Journal on Guidance, Control, and Dynamics, Vol. 29, 
No. 6, (November-December). pp. 1315-1329. 

C. D. Karlgard. (2006). Spacecraft. AIAA Journal of Guidance, Control, and Dynamics, Vol. 29, 
No. 1. pp. 495-499. 

J. Kuipers. (1999). Quaternions and Rotation Sequences. Princeton University Press, Princeton 
NJ 

A. Levant. (2001). Universal SISO sliding-mode controllers with finite-time convergence. 
IEEE Transactions on Automatic Control, Vol. 46, No. 9. pp. 1447-1451. 

A. Levant. (2003). Higher-order sliding modes, differentiation and output-feedback control. 
International Journal of Control. Vol. 76, No. 9/10. pp. 924-941. 

T. Massey and Y. Shtessel. (2005). Continuous Traditional and High Order Sliding Modes 
for Satellite Formation Control. AIAA Journal on Guidance, Control, and Dynamics, 
Vol. 28, No. 4, (July-August). pp. 826-831. 

I. A. Shkolnikov, Y. B. Shtessel, M. Whorton, and M. Jackson. (2000). Robust to Noise 
Microgravity Isolation Control System Design via High-Order Sliding Mode 
Control. Proceedings of the Conference on Guidance, Navigation, and Control, Denver, 
CO. AIAA paper No. 2000-3954. 

                                                 
4 The coupling between attitude channels is treated as disturbance and is thus, compensated implicitly 
by the controller 



 Sliding Mode Control 

 

330 

I. Shkolnikov, Y.B. Shtessel, and D. Lianos. (2005). The effect of sliding mode observers in 
the homing guidance loop,. ImechE Journal on Aerospace Engineering, Part G, 219, 2. 
pp. 103-111. 

Y. Shtessel, C. Hall, and M. Jackson. (2000). Reusable Launch Vehicle Control in Multiple 
Time Scale Sliding Modes. AIAA Journal on Guidance, Control, and Dynamics, Vol. 23, 
No. 6. pp. 1013-1020 

Y.B. Shtessel, I. Shkolnikov, and M. Brown. (2003). An Asymptotic Second-Order Smooth 
Sliding Mode Control. Asian Journal of Control, Vol. 4, No. 5. pp. 498-504. 

Y. Shtessel, I. Shkolnikov and A. Levant. (2007). Smooth Second Order Sliding Modes: 
Missile Guidance Application. Automatica, Vol. 43, No.8. pp. 1470-1476. 

Y. Shtessel, S. Baev, C. Edwards, and S. Spurgeon. (2010). HOSM observer for a class of non-
minimum phase causal nonlinear MIMO systems. IEEE Transactions on Automatic 
Control, Vol. 55, No. 2. pp. 543-548. 

P. Singla, K. Subbarao, and J. L. Junking. (2006) Adaptive Output Feedback Control for 
Spacecraft Rendezvous and Docking under Measurement Uncertainty. AIAA 
Journal of Guidance, Control, and Dynamics, Vol. 22, No. 4. pp. 892-902.  

A. Sparks. (2000). Satellite Formation Keeping in the Presence of Gravity Perturbations, 
Proceedings of the American Control Conference (June). 

C. Tournes, and Y.B. Shtessel. (2006). Autopilot for Missiles Steered by Aerodynamic Lift 
and Divert Thrusters using Second-Order Sliding Mode. AIAA Journal of Guidance 
Control and Dynamics Vol. 29, No. 3. pp. 617-623. 

C. Tournes, Y.B. Shtessel. (2007). Automatic Docking using Second Order Sliding Mode 
Control. Proceedings of the 2007 IEEE American Control Conference. 

V. Utkin, J. Guldner, and J. Shi. (1999). Sliding Modes in Electromechanical Systems. Taylor and 
Francis, London. 

P. K. Wang, F. Y. Hadaegh and K. Lau. (1999) Synchronized Formation Rotation and 
Attitude Control of Multiple Free-Flying Spacecrafts. AIAA Journal of Guidance, 
Control, and Dynamics, Vol. 29, No. 1. pp. 28-35. 

H. Wong, V, Karpila. (2001). Adaptive Output Feedback Tracking Control of Multiple 
Spacecraft. Proceedings of the American Control Conference, (June). 



Rogelio Hernandez Suarez1, America Morales Diaz2, Norberto Flores
Guzman3, Eliseo Hernandez Martinez4 and Hector Puebla4

1Instituto Mexicano del Petróleo, México D.F.
2Centro de Investigación y Estudios Avanzados del IPN, Saltillo Coahuila

3Centro de Investigación en Matemáticas, Guanajuato Guanajuato, Saltillo, Coahuila,
4Universidad Autónoma Metropolitana, México D.F.

México

1. Introduction

Friction occurs in all mechanical systems, (e.g. bearings, transmissions, hydraulic and
pneumatic cylinders, valves, brakes and wheels). Friction is the tangential reaction force
between two surfaces in contact. There is a wide range of physical phenomena that cause
friction, this includes elastic and plastic deformations, fluid mechanics and wave phenomena,
and material sciences (Bowden & Tabor, 1950; Armstrong-Hélouvry, 1994; Rabinowicz, 1995).
In mechanical systems, friction can limit the performance in terms of increasing tracking
errors and, under certain conditions, friction leads to oscillatory behavior, including simple
periodic oscillations and chaos (Feeny &Moon, 1994; Hikihara & Moon, 1994; Ibrahim, 1994).
In many practical situations it may be desirable that a given system originally undergoing
complicated behavior should be forced to display regular motions (e.g., suppression of
oscillatory dynamics). For instance, it could be desirable to induce regular dynamics in
mechanical oscillators to avoid errors (as in the case of precise position mechanisms) lead
by external vibrations and magnetic fields (Chatterjee, 2007; Fradkov & Pogromsky, 1998;
Southward et al., 1991).
To deal with systems with friction, it is necessary to have a good characterization of the
structure of the friction model and then to design appropriate compensation techniques. As a
friction phenomenon has not yet been completely understood, frictionmodeling is not an easy
task. Indeed, uncertainty exists onmost models that contain a friction component (Hinrichs et
al., 1998; Feeny, 1998; Armstrong-Hélouvry et al., 1994; Olsson et al., 1998). Thus, for control
design purposed for systemswith friction it is necessary to consider the uncertainty of models
that includes friction.
Different control approaches for friction compensation have been proposed. For instance,
linear control system with type PI controllers (Puebla & Alvarez-Ramirez, 2008), adaptive
compensation (Canudas de Wit & Lischinsky, 1997; Huang et al., 2000; Tomei, 2000), neural
networks (Lin & Wai, 2003), and others nonlinear model-based methods (Alvarez-Ramirez et
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al., 1995; Chatterjee, 2007; Xie, 2007; Zeng& Sepehri, 2008). The use of linear techniques is very
limiting due the highly nonlinearity of mechanical systems with friction, whereas nonlinear
control design needs, in general, too much information about the process. The performance of
a model-based adaptive control is limited by the accurateness of the model used to describe
the various friction-related effects.
Sliding mode control is a robust control method that has long been applied in simple
mechanical systems (Hangos et al., 2004). A drawback of this methodology, which usually
limits its applicability to control mechanical systems, is the high-frequency switching of the
control action which induces the so-called chattering phenomenon, i.e. undesired oscillations
of the relevant signals causing vibrations and unacceptable mechanical wear (Hangos et al.,
2004). A possibility to overcome this problem is to rely on high order sliding mode control
(Laghrouche et al., 2007; Levant, 2005; Levant, 2001). In (Hernandez-Suarez et al., 2009) we
have applied the integral high order sliding mode control (IHOSMC), to suppress stick-slip
oscillation in an oil-drillstring. The resulting feedback control approach leads to a robust
feedback control scheme that deals with uncertainties in the friction model and drillstrings
parameters. The IHOSMC approach consider the integration of a fractional power of the
absolute value of the tracking error, coupled with the sign function (Laghrouche et al., 2007;
Aguilar-Lopez et al., 2010). This control structure provides simplification of the control
law and good robustness properties. In this chapter we extend the application of IHOSMC
approaches to control a general class of mechanical systems with friction. The proposed
controller yield to a robust performance in presence of external disturbances and uncertainty
on the parameters of systems with friction.
This chapter is organized as follows: In Section 2, for the sake of clarity in presentation, we
briefly provide some issues on the friction phenomenology and modeling, and the class of
mechanical systems with friction is also introduced. In Section 3 we present the IHOSMC
approach and introduce a recursive cascade control scheme for the control of the class of
mechanical systems considered in this chapter. Numerical benchmark examples are used to
illustrate the control performance of the proposed control approach. Finally, in Section 6 we
close this chapter with some concluding remarks.

2. Mechanical systems with friction

In this section we briefly discuss the friction phenomenology. Next we present some classical
models of friction phenomena. Finally, we introduce the class of mechanical systems under
consideration in this chapter.

2.1 Friction phenomenology
Friction involves two solid surfaces sliding against each other. The friction force is affected by
many factors such as the properties of bulk and surface layer materials, the roughness of the
surfaces in contact, the stress levels, the sliding speed, the temperature, the environment, the
properties of the lubricants and the lubrication conditions. Lubrication has the main purpose
of creating a fluid film between the two contacting surfaces, avoiding solid-to-solid contact
(Bowden & Tabor, 1950; Bowden & Tabor, 1964; Armstrong-Hélouvry et al., 1994; Rabinowicz,
1995).
Friction is a torque, or a force, that depends on the relative velocity of the moving surfaces.
Although there is disagreement on the character of the functionality of the friction forces with
the velocity, experiments have confirmed that, for moderate and low velocities, the main
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components in the friction forces are mainly caused by the following phenomena (Bowden
& Tabor, 1950; Bowden & Tabor, 1964; Armstrong-Hélouvry et al., 1994; Rabinowicz, 1995):

1. Coulomb and sticktion: Coulomb friction is due to sticking effects. At zero speed, the
friction torque is equal and opposite of the applied torque, unless the latter one is larger
than the stiction torque. In this case, the friction torque is equal to the stiction torque, Fs.
The stiction torque is a torque at the moment of breakaway and is larger than the Coulomb
torque. Kinetic friction Fr is the resisting force which acts on a body after the force of static
friction has been overcome.

2. Stribeck (downward bends): After the sticktion force has been overcame, the friction force
decreases exponentially, reaching a minimum, and then increases proportionally with the
velocity. These bends occur at velocities close to zero. The friction forces are due to a
partial lubrication, where the velocity is adequate to entrain some fluid in the junction but
not enough to fully separate the surfaces.

3. Viscous: Here the surfaces are fully separated by fluid film. In this regime the viscosity of
the lubricant dominates and friction increases with velocity.

4. Asymmetries and position dependence: Imperfections and unbalances in the mechanism
induce asymmetries and position dependence of the friction forces.

2.2 Friction models
Many friction models have been developed and reflect different aspects of the friction
phenomena (Armstrong-Hélouvry et al., 1994; Hinrichs et al., 1998; Olsson et al., 1998).
In general, existing friction models are usually classified as static and dynamic, where the
fundamental difference between them is the frictional memory. Static models usually have a
form of direct dependence between the friction force and relative velocity. Dynamic friction
models where memory effect is described with a complimentary dynamics between the
velocity and the friction force. Typical friction models are the Columb, Dahl, and the LuGre,
friction models.

1. Columbmodel: Coulomb proposed the first model for the physical origin of friction, which
explained some of the important properties of dry friction in a simple way. Coulomb
sliding friction is given by,

f = FN fcsign(v) v �= 0 (1)

where f is a friction force, FN the normal load, fc the coefficient of Coulomb friction and
v is relative velocity. The indeterminate and discontinuous nature of the Coulomb model
makes it extremely difficult to simulate the dynamics of the mechanical systems (Olsson et
al, 1998).

2. Dahl model: Dahl developed a simple model, which can be considered as a generalization
of Coulomb friction. The frictional hysteresis during pre-sliding is approximated by a
generalized first order equation of the position depending only on the sign of the velocity.
Dahl proposed the following equation,

d f
dt

= σ0(1− sign(v)
F
Fs
)δdv (2)

where σ0 denotes the initial stiffness of the contact at velocity reversal and δd denotes a
model parameter determining the shape of the hysteresis. v is the relative moving speed.
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Fs is the highest steady state friction. The Dahl model produces a smooth transition around
zero velocity (Olsson et al, 1998; Dahl, 1976).

3. Stribeck friction: The Stribeck friction may be represented by,

f = F0sign(v) + Fs exp(−(v/vs)2)− 1)sign(v) (3)

Where F0 is the static friction, Fs is the magnitude of the Stribeck effect, vs is the critical
velocity of the Stribeck effect, and v is the velocity. This model is empirical and in most
cases has a good fit to data (Olsson et al, 1998).

4. LuGre model: The LuGre model describe major features of dynamic friction, including
presliding displacement, varying break-away force and Stribeck effect. The LuGre model
is given by,

f = σ0z+ σ1
·
z+ α2v (4)

·
z = v− |v|

g(v)
z

g(v) = α0 + α1 exp(−(v/vs)2)
where z represents the unmeasurable internal friction state, σ0, σ1, α2 are parameters
associated to the stiffness of the elastic bristle, damping coefficient in elastic range, and
the viscous friction coefficient, respectively, v is the relative velocity, and vs is the Stribeck
velocity. The function g(v) is positive and it describes the Stribeck effect. Direct use
of the above LuGre model for friction compensation may have some implementation
problems. Namely, as the internal friction state z is unmeasurable, it is necessary to
construct observers to estimate z for dynamic friction compensation (Canudas de Wit et
al., 1995; Olsson et al, 1998).

2.2.1 Stick-slip
This phenomenon consists on the sudden and successive change from“stick” state to “sliding”
state, provoking the apparition of vibration and noise. Stick-slip friction is present in any
elements involving relative motion, such as gears, pulleys, bearings, DC motors. Stick-slip
friction is generally described as a composite of two different processes: the static process
when an object is stationary (no sliding is involved) and likely to move under certain applied
torque, and the dynamic process when sliding is involved (Fidlin, 2006; Denny, 2004).
The static process is characterized by the maximum static torque (or breakaway torque), under
which static state remains and the magnitude of the static friction force is equal to that of
the applied force. The slipping process is relatively complicated. Slipping torque is usually
modeled as a linear combination of Coulomb torque, viscous torque, exponential torque used
to represent Stribeck effect, and position dependent components (Fidlin, 2006; Denny, 2004).
A mathematical formulation of the stick-slip friction (denoted by τfm) with some commonly
used friction components is (Fidlin, 2006; Denny, 2004),

τfm = τstmsign(v) + kvisv− τcm(1− exp(−T0 |v|))sign(v)
+ τpmsign(v) + (1− sign(v))τi (5)
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where kvis is the coefficient of viscous friction, τstm represents the maximum static friction
torque, the third term on the right side represents the Stribeck effect, where T0 is a positive
constant, τi is the input torque, so that the last term on the right side stands for the static
friction forcewhose magnitude is equal to the applied force, and τpm is the position dependent
friction torque, which can be modeled as,

τpm = β1 sin(β2q+ β3) (6)

where βi are constants.

2.3 The class of mechanical systems with friction
We consider a n order generic simple model of a mechanical system with friction, which,
possibly after a change of coordinates, can be described by,

·
xi = fi(x) + gi(x)xi+1 1 ≤ i ≤ j− 1 (7)
·
xj = f j(x) + gj(x)u j ≤ n

·
xj+l = f j+l(x) j+ l = n f or j < n

where x are the states of the system and u is the control input. Note that the j first equations
in dynamical system (7) are in the so called chained form. Its not hard to see that several
model of mechanical systemswith friction can be described by (7). For instance, a basic model
formulation, that covers various mechanical models reported in literature is described by,

··
x = −F(

·
x, t) + u (8)

where x is the position,
·
x is the speed, F is a nonlinear function including friction components,

and u is an external input. This system can be described by (7) under a simple coordinates
change.

3. Integral high order sliding model control of mechanical systems with friction

In this section, the IHOSMC is presented to control the class of mechanical systems described
in the above section. By exploiting the chained form of model (7) we use a recursive cascade
control configuration, where a virtual control input is introduced for the control design, and
a single control input u, related to the electrical properties of the motor and consequently, the
torque supplied by the motor is employed.

3.1 Control problem
The control objective is the regulation or tracking of an intermediate state (x1 ≤ xi ≤ j − 1)
of the class of mechanical systems with friction in the form (7) about a given reference, i.e.
xi → xi,re f under the following assumptions,

A1 States x1 to xj are available for control design purposes.

A2 Nonlinear terms f and g and model parameters are uncertain, and can be available rough
estimates of these terms.
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Fig. 1. Cascade control for mechanical systems with friction.

The following comments are in order:

• Dynamical and design problems in mechanical systems can be addressed using large
finite element models, which give quantitative information and can help to give practical
recommendations to circumvent mechanical problems. However, in practice, control and
optimization techniques tend to be based on simple models. Indeed, for control systems
design purposes, both low dimensional and less complex models can provide (to some
degree) qualitative insight on the dominant complex phenomenon occurring inmechanical
systems with friction.

• Assumption A1 is a reasonable assumption in several applications. For instance, high
precision optical encoders for position measurement. On the other hand, even in the
absence of such measurements, a state estimator can be designed.

• A2 considers that nonlinear terms, including friction, can contain uncertain parameters, or
in the worst case the whole terms are unknown. From a practical viewpoint, obtaining
a model that can embody all such characteristics of the friction force is not an easy
task. Having selected an appropriate model, the parameters of the model are needed to
be experimentally identified to implement the model. Friction identification is another
challenging part of the friction compensation process.

3.2 A cascade control scheme
We can exploit the structure of the model given by (7) to design a cascade procedure to
control mechanical systems with friction. Cascade control is a common control configuration
in process control, which can be thought of as partial state feedback. A typical cascade control
structure has two feedback controllers with the output of the primary (master) controller
changing the set point of the secondary (slave) controller (Alvarez-Ramirez et al., 2002;
Krishnaswamy et al., 1990).
Figure 1 shows the recursive cascade control configuration for the class of mechanical systems
given by (7). The cascade control configuration is based on the design of an intermediate
virtual control function uvi = ui. The design is recursive because the computation of ui+1
requires the computation of ui. For instance, for the simple class of mechanical system (8),
the master controller regulates the mechanical position x1 to a desired reference x1,re f with
the virtual input x2 = uvi, the slave controller regulates the velocity state variable x2 to the
reference x2,re f = uvi with the real control input u. In other words, the master controller
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provides reference values x2,re f to the slave controller, which is driven by the real control
input u.

3.3 Integral high order sliding mode control
Sliding mode control techniques have long been recognized as a powerful robust control
method (Hangos et al., 2004; Levant, 2001; Sira-Ramirez, 2002). Sliding mode control is a
nonlinear controller due of the switching control action. Sliding-mode control schemes, have
shown several advantages like allowing the presence of matched model uncertainties and
convergence speed over others existing techniques as Lyapunov-based techniques, feedback
linearization and extended linearization. However standard sliding-mode controllers have
some drawbacks: the closed-loop trajectory of the designed solution is not robust even
with respect to the matched disturbances on a time interval preceding the sliding motion,
the classical sliding-mode controllers are robust in the case of matched disturbances only,
the designed controller ensures the optimality only after the entrance point into the sliding
mode. To try to avoid the above a relatively new kind of sliding-mode structures have
been proposed as the named high-order sliding-mode technique, these techniques consider
a fractional power of the absolute value of the tracking error coupled with the sign function,
this structure provides several advantages as simplification of the control law, higher accuracy
and chattering prevention (Hangos et al., 2004; Levant, 2001; Sira-Ramirez, 2002).

3.3.1 Control design
Sliding mode control designs consists of two phases. In the first phase the sliding surface is
to be reached (reaching mode), while in the second the system is controlled to move along the
sliding surface (sliding mode). In fact, these two phases can be designed independently from
each other. Reaching the sliding surface can be realized by appropriate switching elements
(Hangos et al., 2004).
Defining,

σ(e) = ei = y− yre f (9)

as the sliding surface, we have that the continuous part of the sliding mode controller is given
by,

ueq,i = −gi(x)
−1( fi(x)− •

yi,re f ) (10)

such that,

•
σ(ei) = 0 (11)

where
•
yi,re f is the time-derivative of the desired trajectory signal. In sliding mode, the

controlled system satisfies the condition dei/dt = 0, such that the tracking error will be driven
to zero.
To force the system trajectory to converge to the sliding surface in the presence of both model
uncertainties and disturbances, with chattering minimization and finite-time convergence, the
sliding trajectory is proposed as (Levant, 2001; Aguilar-Lopez et al., 2010),

usld,i = −gi(x)
−1[δ1,iei + δ2,i

∫ t

0

{
sign(ei) |ei|1/p

}
dτ] (12)
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where δ1,i and δ2,i are control design parameters. In essence, to achieve a zero tracking error
all system trajectory must be forced to converge to σ(ei) in finite time and to remain on σ(ei)
afterwards.
The complete IHOSMC is given by,

ui = ueq,i + usld,i = −gi(x)
−1( fi(x)− •

yi,re f + δ1,iei + δ2,i

∫ t

0

{
sign(ei) |ei|1/p

}
dτ) (13)

The synthesis of the above control law requires accurate knowledge of both fi(x) and
dyi,re f/dt to be realizable.
To enhance the robust performance of the above control laws, the uncertain terms fi(x) are
lumped in single terms and compensated with a reduced-order observer (Alvarez-Ramirez,
1999).
Then, we define the modelling error function as follows,

ηi = fi(x) (14)

In order to get estimated values of the modelling error functions η̃, we introduce the following
reduced-order observer,

•
η̃i = λi(ηi − η̃i) (15)

where λi are observer design parameters. From (7) and (15), and after of some direct algebraic
manipulation we get,

•
wi = −gi(x)ui − η̃i η̃i = λi(wi + yi) (16)

The robust IHOSMC law is written as,

ui = −gi(x)(η̃i − •
yi,re f + δ1,iei + δ2,i

∫ t

0

{
sign(ei) |ei|1/p

}
dτ) (17)

By exploiting the properties of the sliding part of the sliding-mode type controllers to
compensates uncertain nonlinear terms, the knowledge of nonlinear terms fi(x) can be
avoided. On the order hand, extensive simulation examples show that the derivative of the
set point variable can be eliminated without affecting the closed loop system performance.
Summarizing, the IHOSMC is composed by a proportional action, which has stabilizing
effects on the control performance, and a high order sliding surface, which compensates the
uncertain nonlinear terms to provide robustness to the closed-loop system. This behavior is
exhibited because, once on the sliding surface, system trajectories remain on that surface, so
the sliding condition is taken and make the surface and invariant set. This implies that some
disturbances or dynamic uncertainties can be compensated while still keeping the surface an
invariant set.
The following comments are in order:

• The IHOSMC approach has two control design parameters, namely, δ1 and δ2 which will
be chosen as δ1 > δ2 > 0. On the other hand, parameter λ, of the uncertainty observer
should be chosen as 0 < λ < ωc, where ωc is the open-loop dominant frequency of the
systems oscillations.
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• Although a rigorous robustness analysis is beyond the scope of this study, numerical
examples will show that the feedback controller is able of yielding robust control
performance despite significant parameter departures from parameter nominal values.

• Stability must be preserved in the context of both structured uncertainties in the
parameters as well as unstructured errors in modeling. A stability analysis for the
proposed control configurations should parallel the steps reported in (Aguilar-Lopez et
al., 2010) and (Aguilar-López & Martínez-Guerra, 2008).

4. Applications

In this section, simulation results are presented for both position regulation and tracking
of mechanical systems with friction (7) with the IHOSMC approach described above. The
control performance is evaluated considering set point changes and typical disturbances of
mechanical systems. We consider the following five examples: (i) Mechanical system with
Coulomb friction, (ii) an inverted pendulum, (iii) an AC induction motor, and (vi) a levitation
magnetic system.

4.1 Mechanical system with Coulomb friction
We consider a mechanical system described in (Alvarez-Ramirez et al., 1995) with a Coulomb
friction law. The dimensionless equation of motion is,

dx1
dt

= x2 (18)

dx2
dt

=
1
m
{−F(x1,x2)− αx1 + τl + u}

where m is the mass of the system, τl is an unknown external force, which way be due to
loads and/or noise acting in the mechanism, u is a manipulated forced used to control the
system and the term F(x1, x2) includes all friction effects and is determined by the following
expression,

F(x1,x2) = φ f (x1)

where φ is the coefficient of friction and f (x1) is the normal load which vary with
displacement,

f (x1) = −μk x1 < 0 (19)

−μs ≤ f (x1) ≤ μsx1 = 0

f (x1) = μk x1 > 0

Control objetive is the position tracking to the periodic reference,

yre f = x1,re f = 0.3 sin(0.5t)

The parameters of the controller are set as δ1,i = [25, 10], and δ2,i = [2.3, 1]. Model simulation
parameters are taken from (Alvarez-Ramirez et al., 1995). The control law is turned on the
t = 50 time units and τl = A sin(1.25t). At t = 75 the amplitude A of the external force τl is
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Fig. 2. (a) Cascade control for mechanical system, (18) and (b) control input.

changed in 20 %. Figure 2 shows the position trajectory before and after the control activation.
In Figure 2 the control input is also displayed. It can be seen that the proposed cascade control
scheme is able to track the desired reference and rejects the applied perturbation. After that
the control input reach the saturation levels (−10 < u < 10) the control inputs displays a
complex oscillatory behavior.

4.2 Inverted pendulum
The inverted pendulum has been used as a classical control example for nearly half a century
because of its nonlinear, unstable, and nonminimum-phase characteristics. In this case we
consider a single inverted pendulum.
The equation of motion for a simple inverted pendulum with Coulomb friction and external
perturbation is (Poznyak et al., 2006),

dx1
dt

= x2 (20)

dx2
dt

= −g sin(x1)/l − vsx2/J − pssign(x2)/J + τd + u/J

where g is the gravitational acceleration, l is the distance between the rotational axis and
center of gravity of the pendulum, J = ml2 is the inertial moment, where m is the mass of the
system, τd = 0.5 sin(2t) + 0.5 cos(5t) is an external disturbance, which may be due to loads
and/or noise acting in the mechanism, u is a manipulated forced used to control the system.
Let yre f = x1,re f = sin(t) be the desired orbit of the pendulum position. Figure 3 shows the
control performance using the control parameters δ1,i = [12, 7], and δ2,i = [1, 0.5]. In this case
the IHOSMC controller is activated at t = 15 and from 0 to 15 time units the pendulum is
driven by the twisting controller introduced by Poznyak et al. (2006). It can be seen from
Figure 3 that the IHOSMC controller is able to follow the periodic orbit with a better closed
loop behavior that the twisting controller.
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Fig. 3. (a) Control performance for inverted pendulum system and (b) control input.

4.3 Induction AC motors
Induction motors have found considerable applications in industry due to their reliability,
ruggedness and relatively low cost. Their mechanical reliability is due to the fact that there
is no mechanical commutation as in most DC motors. Furthermore, induction motors can
also be used in volatile environments because no sparks are produced. An induction motor is
composed of three stator windings and three rotor windings.
A simple mathematical model of an induction motor, under field-oriented control with a
constant rotor flux amplitude, which was presented in (Tan et al., 2003), is the following,

dx1
dt

= x2 (21)

dx2
dt

=
KT

J
x3 − F

J
− τl

J
dx3
dt

= a1x2 + a2x3 + bu

where x1 is the rotor angle, x2 is the rotor angular velocity, x3 is the component of stator
current, u is the component of stator voltage, J is the rotor inertia, τl is the load torque, and F
is the friction force.
Friction force is modeled by the LuGre friction model with friction force variations,

dz
dt

= x2 − |x2|
g(x2)

z (22)

F = σ0z+ σ1
dz
dt

+ σ2x2
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Fig. 4. (a) Cascade control for induction AC motors system and (b) control input.

where z is the friction state that physically stands for the average deflection of the bristles
between two contact surfaces. The nonlinear function is used to describe different friction
effects and can be parameterized to characterize the Stribeck effect,

g(x2) = Fc + (Fs − Fc) exp(− x2
vs

)2 (23)

where Fc is the Coulomb friction value, Fs is the stiction force value, and vs is the Stribeck
velocity.
The control objective is to asymptotically track a given bounded reference signal yre f = x1,re f
given by,

yre f = 5.6 sin(0.4πt) sin(0.02πt) (24)

A load disturbance τl = 0.8 N ·m is injected into the induction motor simulation model. The
position of the rotor angle and the corresponding control input are shown in Figure 4. It can be
seen that the controller is able to track the desired reference (24) using a periodic input of the
control input. The external disturbance is also rejected without an appreciable degradation of
the closed-loop system.

4.4 Levitation system
Magnetic levitation systems have been receiving considerable interest due to their great
practical importance in many engineering fields (Hikihara & Moon, 1994). For instance,
high-speed trains, magnetic bearings, coil gun and high-precision platforms. We consider
the control of the vertical motion in a class of magnetic levitation given by a single degree
of freedom (specifically, a magnet supported by a superconducting system). In particular,
we consider a magnet supported by superconducting system which can be represented by
a second-order differential equation with a nonlinear term which involves hysteresis and
periodic external excitation force. Without loss of generality, one can consider that the model
of the levitation system is modelled by the following equation (Femat, 1998),
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dx1
dt

= x2 (25)

dx2
dt

= −δx2 − x1 + x3 + τl + u

dx3
dt

= −γ(x3 − F)

x1 is defined as a displacement from the surface of a high Tc superconductor (HTSC) surface,
x2 is the velocity, x3 is a dynamical force between the HTSC and the magnet, which includes
hysteresis effects, δ represents a mechanical damping coefficient, γ is a relaxation coefficient,
τl is an external excitation force, and u is the control force.
The nonlinear function F is given by (Femat, 1998),

F = Fx1 exp(−x1)(1− Fx2) (26)

Fx1 = F0 exp(−x1)

Fx1 =

⎧⎪⎨⎪⎩
−μ1− x2 ε ≤ x2
−x2(μ1−μ2)

2ε −ε ≤ x2 < ε
μ2 x2 < −ε

where the exponential term Fx1 shows the force-displacement relation without hysteresis, F0
denotes the maximum force between the HTSC and the magnet, μ1 and μ2 are constants. The
control problem is the regulation to the origin of the vertical motion, i.e. yre f = x1,re f = 0.0. In
the Figure 6 the controlled position and the corresponding control input are presented (control
action is turn on a t = 100.0 time units). It can be seen from Figure 5 that the controller can
regulate the vertical position of the levitation system via a simple periodic manipulation of
the control force. The control input reaches saturation levels in the first 20 time units, which
can be related to high values of the controller parameters.

5. Conclusions

In mechanical systems, the control performance is greatly affected by the presence of several
significant nonlinearities such as static and dynamic friction, backlash and actuator saturation.
Hence, the productivity of industrial systems based onmechanical systems depend upon how
control approaches are able to compensate these adverse effects. Indeed, fiction in mechanical
systems can lead to premature degradation of highly expensive mechanical and electronic
components. On the other hand, due to uncertainties and variations in environmental factors
a mathematical model of the friction phenomena present significant uncertainties.
In this chapter, by means of an IHOSMC approach and a cascade control configuration
we have derived a robust control approach for both regulation and tracking position in
mechanical systems. The underlying idea behind the control approach is to force the error
dynamics to a sliding surface that compensates uncertain parameters and unknown term.
The sliding mode control law is enhanced with an uncertainties observer. We have show via
numerical simulations how the motion can be regulate and tracking to a desired reference in
presence of uncertainties in the control design and changes in model parameters. Although
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Fig. 5. Levitation system: (a) motion vertical control and (b) control input.

the control design is restricted to certain class ofmechanical systemswith friction, the concepts
presented in our work should find general applicability in the control of friction in other
systems.
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1. Introduction 
Remotely Operated Vehicles (ROVs) have had significant contributions in the inspection, 
maintenance and repair of underwater structures, related to the oil industry, especially in 
deep waters, not easily accessible to humans. Two important capabilities for industrial 
ROVs are: position tracking and the dynamic positioning or station-keeping (the vehicle's 
ability to maintain the same position with respect to the structure, at all times). 
It is important to remember that underwater environment is highly dynamic, presenting 
significant disturbances to the vehicle in the form of underwater currents, interaction with 
waves in shallow water applications, for instance. Additionally, the main difficulties 
associated with underwater control are the parametric uncertainties (as added mass, 
hydrodynamic coefficients, etc.). Sliding mode techniques effectively address these issues 
and are therefore viable choices for controlling underwater vehicles. On the other hand, 
these methods are known to be susceptible to chatter, which is a high frequency signal 
induced by control switches. In order to avoid this problem a High Order Sliding Mode 
Control (HOSMC) is proposed. The HOSMC principal characteristic is that it keeps the main 
advantages of the standard SMC, thus removing the chattering effects. 
The proposed controller exhibits very interesting features such as: i. a model-free controller 
because it does neither require the dynamics nor any knowledge of parameters, ii. It is a 
smooth, but robust control, based on second order sliding modes, that is, a chattering-free 
controller is attained. iii. The control system attains exponential position tracking and 
velocity, with no acceleration measurements.  
Simulation results reveal the effectiveness of the proposed controller on a nonlinear 6 
degrees of freedom (DOF) ROV, wherein only 4 DOF (x, y, z, ψ) are actuated, the rest of 
them are considered intrinsically stable. The control system is tested under ocean currents, 
which abruptly change its direction. Matlab-Simulink, with Runge-Kutta ODE45 and 
variable step, was used for the simulations. Real parameters of the KAXAN ROV, currently 
under construction at CIDESI, Mexico, were taken into account for the simulations. In 
Figure 1 one can see a picture of KAXAN ROV. 
For performance comparison purposes, numerical simulations, under the same conditions, 
of a conventional PID and a model-based first order sliding mode control are carried out 
and discussed. 
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Fig. 1. ROV KAXAN; frontal view (left) and rear view (right).  

1.1 Background 
In this section an analysis of the state of the art is presented. This study aims at reviewing ROV 
control strategies ranging from position trajectory to station-keeping control, which are two of 
the main problems to deal with. There are a great number of studies in the international 
literature related to several control approaches such as PID-like control, standard sliding mode 
control, fuzzy control, among others. A review of the most relevant works is given below: 
Visual servoing control 
Some approaches use vision-based control (Van Der Zwaan & Santos-Victor, 2001)(Quigxiao 
et al., 2005)(Cufi et al., 2002)(Lots et al., 2001). This strategy uses landmarks or sea bed 
images to determine the ROV’s actual position and to maintain it there or to follow a specific 
visual trajectory. Nevertheless, underwater environment is a blurring place and is not a 
practical choice to apply neither vision-based position tracking nor station-keeping control.  
Intelligent control 
Intelligent control techniques such as Fuzzy, Neural Networks or the combined Neuro-
Fuzzy control have been proposed for underwater vehicle control, (Lee et al., 
2007)(Kanakakis et al., 2004)(Liang et al., 2006). Intelligent controllers have proven to be a 
good control option, however, normally they require a long process parameter tuning, and 
they are normally used in experimental vehicles; industrial vehicles are still an opportunity 
area for these control techniques.  
PID Control 
Despite the extensive range of controllers for underwater robots, in practice most industrial 
underwater robots use a Proportional-Derivative (PD) or Proportional-Integral-Derivative 
(PID) controllers (Smallwood & Whitcomb, 2004)(Hsu et al., 2000), thanks to their simple 
structure and effectiveness, under specific conditions. Normally PID-like controllers have a 
good performance; however, they do not take into account system nonlinearities that 
eventually may deteriorate system’s performance or even lead to instability. 
The paper (Lygouras, 1999) presents a linear controller sequence (P and PI techniques) to 
govern x position and vehicles velocity u. Experimental results with the THETIS (UROV) are 
shown. The paper (Koh et al., 2006) proposes a linearizing control plus a PID technique for 
depth and heading station keeping. Since the linearizing technique needs the vehicle’s model, 
the robot parameters have to be identified. Simulation and swimming pool tests show that the 
control is able to provide reasonable depth and heading station keeping control. An adaptive 
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control law for underwater vehicles is exposed in (Antonelli et al., 2008)( Antonelli et al., 2001). 
The control law is a PD action plus a suitable adaptive compensation action. The 
compensation element takes into account the hydrodynamic effects that affect the tracking 
performance. The control approach was tested in real time and in simulation using the ODIN 
vehicle and its 6 DOF mathematical model. The control shows asymptotic tracking of the 
motion trajectory without requiring current measurement and a priori exact system dynamics 
knowledge. Self-tuning autopilots are suggested in (Goheen & Jefferys, 1990), wherein two 
schemes are presented: the first one is an implicit linear quadratic on-line self-tuning 
controller, and the other one uses a robust control law based on a first-order approximation of 
the open-loop dynamics and on line recursive identification. Controller performance is 
evaluated by simulation.   
Model-based control (Linearizing control) 
Other alternative to counteract underwater control problems is the model-based approach. 
This control strategy considers the system nonlinearities. On the other hand it is important to 
notice that the system’s mathematical model is needed as well as the exact knowledge of robot 
parameters. Calculation and programming of a full nonlinear 6 DOF dynamic model is time 
consuming and cumbersome. In (Smallwood & Whitcomb, 2001) a preliminary experimental 
evaluation of a family of model-based trajectory-tracking controllers for a full actuated 
underwater vehicle is reported. The first experiments were a comparison of the PD controller 
versus fixed model-based controllers: the Exact Linearizing Model-Based (ELMB) and the Non 
Linear Model-Based (NLMB) while tracking a sinusoidal trajectory. The second experiments 
were followed by a comparison of the adaptive controllers: adaptive exact Linearizing model-
based and adaptive non linear model-based versus the fixed model-based controllers ELMB 
and NLMB, tracking the same trajectory. The experiments corroborate that the fixed model-
based controllers outperformed the PD Controller. The NLMB controller outperforms the 
ELMB. The adaptive model-based controllers all provide more accurate trajectory tracking 
than the fixed model-based. However, notice that in order to implement such model-based 
controllers, at least the vehicle’s dynamics is required, and in some cases the exact knowledge 
of the parameters as well, which is difficult to achieve in practice. In paper (Antonelli, 2006) a 
comparison between six controllers was performed, and four of them are model-based type; 
the others are a non model-based and a Jacobian-transpose-based. Numerical simulations 
using the 6 DOF mathematical model of ODIN were carried out. The paper concludes that the 
controller’s effort is very similar; however the model-based approaches have a better behavior. 
In paper (McLain et al., 1996), real-time experiments were conducted at the Monterey Bay 
Aquarium Research Institute (MBARI) using the OTTER vehicle. The control strategy was a 
model-based linearizing control. Additionally interaction forces acting on the vehicle due to 
arm motion were predicted and fed into the vehicle’s controller. Using this method, station-
keeping capability was greatly enhanced. Finally, other exact linearizing model-based control 
has been used in (Ziani-Cherif, 19998).  
First order Sliding Mode Control (SMC) 

Sliding mode techniques effectively address underwater control issues and are therefore viable 
choices for controlling underwater vehicles. However, it is well known that these methods are 
susceptible to chatter, which is a high frequency signal induced by the switching control. Some 
relevant studies that use SMC are described next. The paper (Healey & Lienard, 1993) used a 
sliding mode control for the combined steering, diving and speed control. A series of 
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simulations in the NPS-AUV 6 DOF mathematical model are conducted. (Riedel, 2000) 
proposes a new Disturbance Compensation Controller (DCC), employing on board vehicles 
sensors that allow the robot to learn and estimate the seaway dynamics. The estimator is based 
on a Kalman filter and the control law is a first order sliding mode, which induces harmful 
high frequency signals on the actuators. The paper (Gomes et al., 2003) shows some control 
techniques tested in PHANTON 500S simulator. The control laws are: conventional PID, state 
feedback linearization and first order sliding modes control. The author presented a 
comparative analysis wherein the sliding mode has the best performance, at the expense of a 
high switching on the actuators. Work (Hsu et al., 2000) proposes a dynamic positioning 
system for a ROV based on a mechanical passive arm, as a measurement system. This 
measurement system was selected from a group of candidate systems, including long base 
line, short baseline, and inertial system, among others. The selection was based on several 
criteria: precision, construction cost and operational facilities. The position control laws were a 
conventional P-PI linear control. Last, the other position control law was the variable structure 
model-reference adaptive control (VS-MRAC). Finally, in the paper (Sebastián, 2006) a model-
based adaptive fuzzy sliding mode controller is reported. 
Adaptive first order Sliding Mode Control (ASMC) 

SMC have a good performance when the controller is well tuned, however if the robot changes 
its mass or its center of mass, for instance, because of the addition of a new arm or a tool, the 
system dynamics changes and the control performance may be affected; similarly, if a change 
in the underwater disturbances occurs (current direction, for instance), a new tuning should be 
done. In order to reduce chattering problems, ASMC have been proposed. These controllers 
are excellent alternative to counteract changes in the system dynamics and environment, 
nevertheless design and tuning time could be longer, and robot model is required. Following, 
some relevant works are enumerated. In (Da Cunha, 1995), an adaptive control scheme for 
dynamic positioning of ROVs, based on a variable structure control (first order sliding mode), 
is proposed. This sliding mode technique is compared with a P-PI controller. Their 
performances are evaluated by simulation and in pool tests, proving that the sliding mode 
approach has a better result. The paper (Bessa, 2007) describes a depth SMC for remotely 
operated vehicles. The SMC is enhanced by an adaptive fuzzy algorithm for 
uncertainties/disturbances compensation. Numerical simulations in 1 DOF (depth) are 
presented to show the control performance. This SMC also uses the vehicle estimated model. 
Paper (Sebastián & Sotelo, 2007) proposes the fusion of a sliding mode controller and an 
adaptive fuzzy system. The main advantage of this methodology is that it relaxes the required 
exact knowledge of the vehicle model, due to parameter uncertainties are compensated by the 
fuzzy part. A comparative study between; PI controller, classic sliding mode controller and the 
adaptive fuzzy sliding mode is carried out. Experimental results demonstrate the good 
performance of the proposed controller. (Song & Smith, 2006) combine sliding mode control 
with fuzzy logic control. The combination objective is to reduce chattering effect due to model 
parameter uncertainties and unknown perturbations. Two control approaches are tested: 
Fuzzy Sliding Mode Controller (FSMC) and Sliding Mode Fuzzy Controller (SMFC). In the 
FSMC uses a simple fuzzy logic control to fuzzify the relationship of the control command and 
the distance between the actual state and the sliding surface. On the other hand, at the SMFC 
each rule is a sliding mode controller. The boundary layer and the coefficients of the sliding 
surface become the coefficients of the rule output function. Open water experiments were 
conducted to test AUV’s depth and heading controls. The better behavior was detected in the 
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SMFC. Finally, an adaptive first order sliding mode control for an AUV for the diving 
maneuver was implemented in (Cristi et al., 1990). This control technique combines the 
adaptivity of a direct adaptive control algorithm with the robustness of a sliding mode 
controller. The control is validated by numerical simulations.   
High Order Sliding Mode Control (HOSMC) 
In order to avoid chattering problem and system model requirement a new methodology 
called High Order Sliding Mode Control (HOSMC) is proposed in (Garcia-Valdovinos, 
2009). HOSMC principal characteristic is that it keeps the main advantages of the standard 
SMC, removing the chattering effects (Perruquett & Barbot, 1999). 
The methodology proposed in this chapter was firstly reported in (Garcia-Valdovinos, 2009), 
where it is proposed a second order sliding-PD control to address the station keeping 
problem and trajectory tracking under disturbances. The control law is tested in an under-
actuated 6-DOF ROV under Matlab-Simulink simulations, considering unknown and abrupt 
changing currents direction. 

2. General 6 DOF underwater system model  
Following standard practice (Fossen, 2002), a 6 DOF nonlinear model of an underwater 
vehicle is obtained. By using a global reference Earth-fixed frame and Body-fixed frame, see 
Figure 2. The Body-fixed frame is attached to the vehicle. Its origin is normally on the center of 
gravity. The motion of the Body-fixed frame is described relative to the Earth-fixed frame.  
 

 
Fig. 2. Reference Earth-fixed frame and Body-fixed frame. 

The notation defined by SNAME (Society of Naval Architects and Marine Engineers) 
established that the Body-fixed frame has components of motion given by the linear velocities 
vector   [ ]ν =1

Tu v w  and angular velocities vector [ ]=2
Tv p q r  (Fossen, 2002).. The 

general velocity vector is represented as: 

[ ] [ ]ν ν ν= =1 2
T Tu v w p q r  

where u is the linear velocity in surge, v the linear velocity in sway, w the linear velocity in 
heave, p the angular velocity in roll, q the angular velocity in pitch and r the angular velocity 
in yaw. 
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The position vector [ ]η =1
Tx y z and orientation vector [ ]η φ θ ψ=2

T coordinates 
expressed in the Earth-fixed frame are: 

[ ] [ ]η η η φ θ ψ= =1 2
T Tx y z  

where x, y, z represent the Cartesian position in the Earth-fixed frame and φ represent the roll 
angle, θ  the pitch angle and ψ the yaw angle. 
Kinematic model. It is the transformation matrix between the Body and Earth frames, 
expressed as (Fossen, 2002): 

                               
( )

( )
( )

η η ν

η νη
η νη

=

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

1 11 2 3 3

2 23 3 2 2

                 

0
0

x

x

J

J
J

  (1) 

where ( )η1 2J is the rotation matrix that gives the components of the linear velocities ν1  in 
the Earth-fixed frame and ( )η2 2J is the matrix that relates angular velocity ν 2  with vehicle's 
attitude in the global reference frame. 
Well-posed Jacobian: The transformation (1) is ill-posed when θ= ±90o. To overcome this 
singularity, a quaternion approach might be considered. However, the vehicle KAXAN is 
not required to be operated on θ= ±90o. In addition, the ROV is completely stable in roll and 
pitch coordinates. 
Hydrodynamic model: The equation of motion expressed in the Body-fixed frame is given as 
follows (Fossen, 2002): 

                                                  ν ν ν ν ν η τ+ + + =( ) ( ) ( )M C D g   (2) 

where ν η∈ ∈6 1 1, ,n x nxR R and τ ∈ 1.p xR  τ denotes the control input vector. Matrix 
∈ ,nx nM R  is the inertia matrix including hydrodynamic added mass, ∈ ,n x nC R is a 

nonlinear matrix including Coriolis, centrifugal and added terms, ∈ ,n x nD R  denotes 
dissipative influences, such as potential damping, viscous damping and skin friction, finally 
vector ∈ 1 ,n xg R denotes restoring forces and moments. 
Ocean currents. Some factors that generate current are: tide, local wind, nonlinear waves, 
ocean circulation, density difference, etc. It’s not the objective of this work to make a deeply 
study of this phenomena, but only to study the current model proposed by (Fossen, 2002). 
This methodology proposes that the equations of motion can be represented in terms of the 
relative velocity: 

 ν ν= −r cV   (3) 

where [ ]= 0 0 0 T
c c c cV u v w  is a vector of irrotation Body-fixed current velocities. 

The average current velocity Vc is related to Earth-fixed current velocity components 
⎡ ⎤
⎣ ⎦

E E E
c c cu v w  by the following expression: 

                                                   
α β

β

α β

=

=

=

cos( )cos( )

cos( )

sin( )cos( )

E
c c c c
E
c c c
E
c c c c

u V
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  (4) 
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where αc is the angle of attack and βc the sideslip angle. 
Finally, the Earth-fixed current velocity could be computed at the Body-fixed frame, by 
using 

 ( )η

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

1 2

E
cc
E

c c
E

c c

uu
v J v
w w

  (5) 

In order to simulate the current and their effect on the ROV, the following model will be 
applied 

 ν ν ν ν ν ν ν η τ+ + + + =( ) ( ) ( ) ( )RB A r r r rM C C D g   (6) 

where CRB is the Coriolis from rigid body inertia, and CA is the Coriolis from added mass. 
Assuming that Body-fixed current velocity is constant or at least slowly varying, 

= ⇒ =0c rv v v . 
Control input vector. The τη comprises the thruster force applied to the vehicle. KAXAN has 
four thrusters, whose forces and moments are distributed as: 
• F1 Thruster located at rear (left). 
• F2 Thruster located at rear (right). 
• F3 Lateral thruster. 
• F4 Vertical thruster. 
F1 and F2 propel the vehicle in the x direction and generates the turn in ψ when F1≠ F2 , F3 
propels the vehicle sideways (y direction) and F4 allows the vehicle to move up and down (z 
direction). Then the control signal τη must be multiplied by a B matrix comprising forces 
and moments according to the force application point to the center of mass. 

 ητ

+⎡ ⎤
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  (7) 

Rewriting (7) gives rise to 

 ητ
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  (8) 
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3. Control systems 
In this section the PID control and model-based first order SMC laws are reminded, later the 
model-free 2-order sliding mode control technique is introduced (hereafter called HOSMC). 
These control laws behavior are shown in the next section. 

3.1 PID control 
The Proportional-Integral-Derivative control law is (Ogata, 1995): 

 

( ) ( ) ( )( )

( ) ( )( )[ ]TTDP

k

h

TT

I

TP
TP

kekeTK

hehe
T

KkeK

Δ−−Δ+

Δ−+ΔΔ
+Δ= ∑

=

1

2
1

1
τ

  

(9)

 
where ΔT is the sample time, e(kΔT) is the error measured at the sample time kΔT. KP is the 
proportional gain, TI is the integral time and TD is the derivative time. The PID control gains 
are shown in Table 1. 
 

Gains 
 

xx  yy  zz  φ  θ  ψ  
Kp 1600 1800 1300 0 0 18000 
Td 3000 15000 3000 0 0 70000 
Ti 0.5 10 0.5 0 0 0.25 

Table 1. PID control gains. 

3.2 Model-based first order sliding mode control (SMC) 
Using the methodology given in (Slotine & Li, 1991), the sliding surface is defined as 

 ηαη ~~ −=s   (10) 
where dηηη −=~ . 
The SMC control law is given by 

  ( )eq sK sign sτ τ β= +   (11) 

where eqτ  is the equivalent control given by the system estimated dynamic. Parameters β 
and Ks are constants, sign denotes the sign function. Table 2 lists the control gains used in 
the simulation. 
 

Gains 
 

xx  yy  ZZ  φ  θ  ψ  
Ks 553300  770000  1100  00  00  4400  
α 553300  550000  2255  00  00  1155  

Table 2. SMC control gains. 

3.3 Model-free 2nd-order sliding mode control (HOSMC) 
To analyze the proposed controller is necessary to introduce the following preliminaries. Let 
the nominal reference ηr be: 
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 ( )η η αη σ= − + − ∫
0

t

r d d i qS K sign S d   (12) 

where α, Ki are diagonal positive definite n×n gain matrices, function sign(x) stands for sign 
function of x ∈ℜn, and 

 

( ) κ

η αη
−

= −

= −

= 0

q d

t
d

S S S

S

S S t e

  (13) 

for κ > 0 . S(t0) stands for S(t) at t=0.  
Now, let the extended error variable be defined as follows:  

 η η= −r rS   (14) 
and substituting (12) into (14) yields, 

 ( ) σ= + ∫
0

t

r q i qS S K sign S d   (15) 

Notice that the task is defined in the Earth-fixed frame for the sake of simplicity. 
Controller definition 
The control design and some structural properties are now given. 
Theorem. Consider the vehicle dynamics (2) in closed loop with the control law given by 

 ητ = − d rK S   (16) 

where Kd is a positive n×n  feedback gain matrix. Exponential tracking is guaranteed, 
provided that Ki in (15) and Kd are large enough, for small initial error condition. 
Proof. A detailed analysis shows that the above Theorem fulfills, see (Garcia-Valdovinos et 
al. 2006) and (Parra-Vega et al., 2003) for more details ▀. 
Remark 1. Since the control (15) is computed in the Earth-fixed frame it is necessary to map 
it into the Body- fixed frame by using the transpose Jacobian (1) as follows: 

 ητ τ= TJ   (17) 

Remark 2. Expanding the control law (16) can be rewritten as follows: 

 ( )ητ αη η σ= − − − ∫
0

 

t

d d d i q
P D

Sliding part

K K K K sign S d   (18) 

which gives rise to a sliding PD-like controller. 

3.3.1 Comments on HOSMC 
How to tune the controller: The stability proof (see (Garcia-Valdovinos et al. 2006) and 
(Parra-Vega et al., 2003) for more details) suggests that arbitrary small Ki and small α can be 
set as a starting point. Increase feedback gain Kd until acceptable boundedness of Sr appears. 
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Then, increase gradually Ki until the sliding mode arises. Finally, increase α to achieve a 
better position tracking performance. Notice that Ki is not a high gain result since a larger Ki 
does not mean a larger domain of stability. 
Robustness: The system has inherent robustness of typical variable structure systems, since 
the invariance property is attained for all time, whose convergence is governed solely by 
(13) when Sq(t)=0 for all time, independently of bounded disturbances. 
Smooth Controller: Higher-order sliding modes, in this case second order sliding mode 
(SOSM), have emerged to solve the problem of chattering, which is induced by first order 
sliding modes (FOSM). Besides preserving the advantages of FOSM, the scheme SOSM 
totally removes the chattering effect of FOSM, and provides for even higher accuracy. In our 
case, SOSM is induced, and chattering is circumvented by integrating the sign function of Sq. 
Finite time convergence: Since sliding mode exists for all time, it is possible to attain finite 
time convergence of position tracking errors by means of well-posed terminal attractors. 
Finite time convergence can be tuned arbitrarily via a time-varying gain α(t) so as to drive 
smoothly Δx(t) toward its equilibrium Δx(t)=0. Gain α(t) is tailored with a Time Base 
Generator (TBG), which may be a fifth order polynomial that smoothly goes from →0 1 , for 
more details see (Garcia-Valdovinos et al. 2006). 

4. Numerical simulations 
Performance of the controllers is verified through some simulations with a 6 DOF 
underwater vehicle (2), where only 4 DOF are actuated, that is (x, y, z, ψ). Evidently, φ and θ 
are not actuated, though these are bounded (stable). Position tracking simulations are 
presented. Matlab-Simulink has been used to perform the simulations with ODE Runge-
Kutta 45, variable step. 

4.1 Controller’s gains 
Feedback gains for the controller are show in Table 3. 
 

Gains 
 

xx  yy  zz  φ  θ  ψ  
α 3300  3300  3300  00  00  5500  
Kd 11000000  11000000  11000000  00  00  11000000  
Ki 00..0055  00..0055  00..0055  00  00  00..0055  
κ 55  

Table 3. Model-free 2-order sliding mode contol gains. 

4.2 Ocean current parameters 
The current starts flowing to the north and after some time, it suddenly changes to east. In 
all cases the current is Vc=1.1 m/s. According to (2) and (4) one has the following: 
1. North: When flowing to the north, parameters are the following: αc = 0 rad and βc =0 rad. 
2. East: When flow is in the east direction, parameters are the following: αc = 0 rad and βc = 

π/2 rad. 

4.3 Position tracking   
Now, the proposed controller is evaluated for tracking tasks, under ocean currents. The task 
is divided into two stages. First stage consists of moving the vehicle smoothly from an initial 
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position [xi, yi, zi, ψi] = [0, 0, 0, 0] to a final position [xf, yf, zf, ψi]=[1, 0, 0.5, π/2], see the linear 
path in figures 3, 7 and 11, for the PID, SMC and HOSMC, respectively. This stage lasts 15 
seconds, from t=0 s to t=15 s. 
Second stage, once the vehicle is correctly oriented, it is requested to follow a circumference of 
radio r=1 m, centered at (h, k) = (0, 0). The circumference is executed at a rate given by ω=0.628 
rad/s, that is, in t=10 s. Notice that the circumference is designed in plane x, y, and ψ is always 
tangential to the circumference, see the circular path in figures (3, 7 and 11, for the PID, SMC 
and 2-order sliding mode control, respectively). This stage lasts 10 seconds, from t>15 s to t=25 s. 
From t=10 s to t<15 s (first stage) the ocean current flows to the north (uc). The lasts 15 
seconds, from t>10 s to t=25 s, current flows to the east (υc). 

4.4 Description of results 
Figures 3 (PID), 7 (SMC) and 11 (HOSMC), depict the complete trajectory tracking by the system.  
Figures 4 (PID), 8 (SMC) and 12 (HOSMC), show the system position tracking comparison x 
vs xd, y vs yd and z vs zd.  
Figures 5 (PID), 9 (SMC) and 13 (HOSMC), give the robot inclination behavior; notice that 
the angular position tracking in ψ is attained (even under currents influence). As it was 
mentioned φ and θ are not actuated, however they are stable, they present a slight deviation 
from zero, due to the changing current.   
The control signal behavior is described in Figures 6 for the PID control, 10 for the SMC and 
14 for the HOSMC. The figures show the propulsion force in the x, y and z directions (from 
top to bottom), and the last box represent the momentum around in the ψ angle. 
Finally the control performance is compared by using the Mean Square Error (MSE). Figure 
15 represents the MSEs values for the three control techniques. The figure show two bars for 
each control technique, the first represents the MSER and the second is the MSEψ. Where the 
MSER is defined by: 

 ( ) ( ) ( )= + +
22 2

R x y zMSE MSE MSE MSE   (19) 

4.5 PID control 

 
Fig. 3. Position tracking performance under PID control.  
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Fig. 4. Position tracking performance (x vs xd, y vs yd and z vs zd) under the PID control.  

 
 

 
 

Fig. 5. Angular inclinations behavior (φ, θ and ψ  vs ψd) under the PID control. 
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Fig. 6. Control signal behavior. From top to bottom propulsion force in the x, y and z 
directions, and the last box represent the momentum around the ψ angle (PID control).   
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4.6 Model-based first order mode control (SMC) 
 
 
 

 
 

Fig. 7. Position tracking performance with SMC. 

 
 

 
 

Fig. 8. Position tracking performance (x vs xd, y vs yd and z vs zd) with the SMC. 
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Fig. 9 Angular inclinations behavior (φ, θ and ψ vs ψd) with the SMC control. 
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Fig. 10. Control signal behavior. From top to bottom propulsion force in the x, y and z 
directions, and the last box represent the momentum around in the ψ angle (SMC).  
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4.7 Model-free 2nd-Order sliding mode control 
 

 
 

 
 

Fig. 11. Position tracking performance with HOSMC. 

 
 

 
 

Fig. 12. Position tracking performance (x vs xd, y vs yd and z vs zd) with the HOSMC. 
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Fig. 13. Angular inclinations behavior (φ, θ and ψ vs ψd) with the HOSMC. 
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Fig. 14. Control signal behavior. From top to bottom propulsion force in the x, y and z 
directions, and the last box represent the momentum around in the ψ angle (HOSMC). 
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4.8 Control performance comparison by Mean Square Error (MSE) 
An MSE study reveals that the proposed controller (HOSMC) exhibits the best performance 
in terms of position tracking. 
  

 
Fig. 15. Mean Square Error (MSE) values for the three control techniques. 
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1. Introduction

Pneumatic muscles are innovative tensile actuators consisting of a fiber-reinforced vulcanised
rubber tubing with appropriate connectors at both ends. The working principle is based
on a rhombical fibre structure that leads to a muscle contraction in longitudinal direction
when the pneumatic muscle is filled with compressed air. This contraction can be used
for actuation purposes. Pneumatic muscles are low cost actuators and offer several further
advantages in comparison to classical pneumatic cylinders: significantly less weight, no
stick-slip effects, insensitivity to dirty working environment, and a higher force-to-weight
ratio. A major advantage of pneumatic drives as compared to electrical drives is their
capability of providing largemaximum forces for a longer period of time. In this case electrical
drives are in risk of overheating and may result in increasing errors due to thermal expansion.
For these reasons, different researchers have investigated pneumatic muscles as actuators for
several applications, e.g. a planar elbow manipulator in Lilly & Yang (2005), a 2-DOF serial
manipulator in Van-Damme et al. (2007) or a parallel manipulator in Zhu et al. (2008).
Pneumatic muscles are characterised by dominant nonlinearities, namely the force and
volume characteristics. Hence, these nonlinearities have to be considered by suitable control
approaches such as sliding mode control. In this contribution the sliding mode technique
is applied to a novel linear drive actuated by four pneumatic muscles. This pneumatic
linear drive allows for maximum velocities of approximately 1.3 m/s in a workspace of
approximately 1 m. In Aschemann & Hofer (2004) and Aschemann et al. (2006) the authors
presented the implementation of a trajectory control for a carriage with a pair of pneumatic
muscles arranged at opposite sides of a carriage. Unfortunately, this direct actuation by
pneumatic muscles suffers from two main drawbacks: On the one hand, the maximum
velocity of the carriage is limited to approx. 0.3 m/s, on the other hand the workspace is
constrained to the maximum contraction length of the pneumatic muscles, in the given case
to approx. 0.25 m. To increase the available workspace as well as the maximum carriage
velocity, a new test-rig has been built up. At this test-rig, a rocker transmits the drive force
of the pneumatic muscles to the carriage, see Aschemann & Schindele (2008) or Schindele &
Aschemann (2010). One disadvantage of this setup is the required height, necessary for the
kinematics considered there. To reduce the overall size of the drive mechanism, now, the
muscle force is transmitted to the carriage by a pulley tackle consisting of a wire rope and
several deflection pulleys, see Fig. 1. The mentioned components are installed such that the
required muscle force as well as the maximum workspace and velocity of the carriage are

 

Sliding Mode Control Applied to a Novel 
Linear Axis Actuated by Pneumatic Muscles 

19



zC

Left Pneumatic Muscle

Right Pneumatic Muscle

Pulley

Rope

Carriage

Frame

Figure 1. Experimental setup.

increased by a factor of three, in comparison to a directly driven configuration. For actuation
of the carriage, four pneumatic muscles are employed, whereas two muscles are used for each
direction of tension, respectively. The mass flow rate of compressed air in and accordingly out
of each pneumatic muscle is controlled by means of two separate proportional valves. One
proportional valve is employed for the two left pneumatic muscles and the other proportional
valve is utilised for the two right pneumatic muscles. Pressure declines in the case of large
mass flow rates are avoided by using an air accumulator for each valve.
In the paper, first, a control-oriented model of the pneumatically driven high-speed linear
axis is derived in section 2 as the basis of control design. At this, polynomial descriptions
are utilised to describe the nonlinear characteristics of the pneumatic muscle, i.e., the muscle
volume and the muscle force as functions of both contraction length and internal muscle
pressure. Second, in sections 3 and 4, slidingmode control techniques are employed to design
a nonlinear cascade control. For this purpose the differential flatness-property of the system is
exploited. The inner control loops involve a fast pressure control for each muscle, respectively.
The outer control loop achieves a decoupling of the carriage position and the mean muscle
pressure as controlled variables and provides the reference pressures for the inner pressure
control loops. As an alternative to the standard sliding mode technique, additionally, a
second-order sliding mode controller and a proxy-based sliding mode controller has been
designed for the outer control loop. Proxy-based sliding mode control is a modification
of sliding mode control as well as an extension of PID-control, see Kikuuwe & Fujimoto
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Figure 2. Drawing of the left pulley tackle.

(2006), Van-Damme et al. (2007). The basic idea is to introduce a virtual carriage, called
proxy, which is controlled using sliding mode techniques, whereas the proxy is connected
to the real carriage by a PID-type coupling force. The goal is to achieve precise tracking
during normal operation and smooth, overdamped recovery in the presence of large position
errors, which leads to an inherent safety property. In sections 5 and 6, nonlinear friction and
remaining model uncertainties in the equations of motion are considered by a feedforward
friction compensation module, based on the LuGre model in combination with a nonlinear
reduced-order disturbance observer. Finally, in section 8, the proposed control strategy has
been implemented at the test rig of the Chair of Mechatronics, University of Rostock. Thereby,
desired trajectories for the carriage position can be tracked with high accuracy.

2. System modelling

The modelling of the pneumatically driven high-speed linear axis involves the mechanical
subsystem and the pneumatic subsystem, which are coupled by the tension forces of the
pneumatic muscles.

2.1 Modelling of the mechanical subsystem
The mechanical model of the high-speed linear axis consists of the carriage and two pulley
tackles, at which one pulley tackle transmits the tension force of two pneumatic muscles
to the carriage in each case. In this way two pneumatic muscles as well as one pulley
tackle is employed for each moving direction of the carriage, see Fig. 2. For modelling
the mechanical subsystem is divided into the following elements (Fig. 1 and Fig. 2): a
lumped mass for the carriage (mass mC), the two connection plates, which are also modelled
as lumped masses (mass mMFi, i = {l, r}) and the six pulleys (mass moment of inertia
Jij, i = {l, r}, j = {1, 2, 3}). The motion of the linear axis is completely described by the
generalised coordinate zC(t), which denotes the carriage position. The equation of motion
directly follows from Lagrange’s equations in form of a second-order differential equation

m · z̈C =
aM
k

(FMr − FMl) − FU , (1)
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with the reduced mass

m =
1
k2

⎛
⎝k2 ·mC + mMFl + mMFr +

3

∑
j=1

Jl j

(
j
r

)2
+

3

∑
j=1

Jrj

(
j
r

)2
⎞
⎠ . (2)

The parameter k = 3 denotes the number of pulleys (radius r) employed for each pulley
tackle, and the parameter aM = 2 stands for the two muscles, used for actuation in the left or
right direction, respectively. All remaining model uncertainties are taken into account by the
disturbance force FU. On the one hand, these uncertainties stem from approximation errors
concerning the static muscle force characteristics and non-modelled viscoelastic effects of the
vulcanised rubber material. On the other hand, time-varying damping and friction acting on
the carriage, the connection plates and the pulleys depend in a complex manner on lots of
influence factors and cannot be accurately represented by a simple friction model.

2.2 Modelling of the pneumatic subsystem
Under the assumption, that the dynamic behaviour of the internal muscle pressure is
identically for the two left and right muscles, for modelling and control of the pneumatic
subsystem only one muscle for each drive direction is considered. The larger force obtained
by utilising two muscles for each pulley tackle is regarded by the factor αM in equation (1). A
mass flow ṁMi, i = {l, r} into the pneumatic muscle leads to an increase in internal pressure
pMi, and a contraction Δ�Mi of the muscle in longitudinal direction due to specially arranged
fibers. The maximum contraction length Δ�M,max is given by 25% of the uncontracted length.
This contraction effect can be exploited to generate forces. The force FMi and the volume
VMi of a pneumatic muscle depend nonlinear on the according internal pressure pMi and the
contraction length Δ�Mi. Given the length of the uncontracted muscle �M, the contraction
length of a pneumatic muscle is related to the carriage position by the following equations

Δ�Ml = �M − 1
k
zC ,

Δ�Mr = �M +
1
k
zC .

(3)

(4)

The dynamics of the internal muscle pressure follows directly from a mass flow balance in
combination with the energy equation for the compressed air in the muscle. As the internal
muscle pressure is limited by a maximum value of pMi,max = 7 bar, the ideal gas equation
represents an accurate description of the thermodynamic behaviour of the air in muscle i =
{l, r} (Smith et al. (1996))

pMi
ρMi

= RL · TMi . (5)

Here, the density ρMi, the gas constant of air RL and the thermodynamic temperature TMi are
introduced. The thermodynamic process is modelled as a polytropic change of state (Smith
et al. (1996))

pMi
ρnMi

= const. (6)

with n = 1.26 as identified polytropic exponent. The polytropic exponent is in between n = 1
for an isothermal process, and n = κ for an isentropic process. Thus, the relationship between
the time derivative of the pressure and the time derivative of the density is given by

ṗMi = n · RL · TMi · ρ̇Mi . (7)
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Figure 3. Identified volume characteristic of the pneumatic muscle.

The mass flow balance for the pneumatic muscle is governed by

ρ̇Mi ·VMi = ṁMi − ρMi · V̇Mi (8)

The identified volume characteristic (Fig. 3) of the pneumatic muscle can be described by a
polynomial function of both contraction length Δ�Mi and the muscle pressure pMi

VMi (Δ�Mi, pMi) =
3

∑
j=0

aj · Δ�
j
Mi ·

1

∑
k=0

bk · pkMi. (9)

By inserting (7) and (9), the pressure dynamics (8) for the muscle i results in

ṗMi =
n

VMi + n · ∂VMi
∂pMi

· pMi

[
uMi − ∂VMi

∂Δ�Mi
· dΔ�Mi

dzC
· pMi · żC

]

= kui (Δ�Mi, pMi) uMi − kpi
(
Δ�Mi,Δ�̇Mi, pMi

)
pMi,

(10)

where uMi = RL · TMi · ṁMi denotes the input variable. The internal temperature TMi can be
approximated with good accuracy by the constant temperature Tamb of the ambiance. In this
way, temperature measurements are avoided, and the implementational effort is significantly
reduced.
The force characteristic FMi (pMi,Δ�Mi) of a pneumatic muscle states the resulting tension
force for given internal pressure pMi as well as given contraction length Δ�Mi and represents
the connection of the mechanical and the pneumatic system part. The nonlinear force
characteristic (Fig. 4) has been identified by static measurements and, then, approximated
by the following polynomial description

FMi(pMi,Δ�Mi) =

{
F̄Mi(pMi,Δ�Mi), F̄Mi > 0

0 , else
, (11)
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with

F̄Mi(pMi,ΔlMi) =
3

∑
m=0

(am · Δ�mMi)︸ ︷︷ ︸
f1i

pMi −
4

∑
n=0

(bn · Δ�nMi)︸ ︷︷ ︸
f2i

. (12)

3. Control of the carriage position

The different sliding mode controllers for the carriage position are designed by exploiting
the differential flatness property of the system under consideration (Fliess et al. (1995),
Sira-Ramirez & Llanes-Santiago (2000)). For the mechanical system the carriage position zC
and themeanmuscle pressure pM = 0.5 (pMl + pMr) are chosen as flat output candidates. The
trajectory control of the mean pressure allows for increasing stiffness concerning disturbance
forces acting on the carriage (Bindel et al. (1999)). As the inner controls have been assigned
a high bandwidth, these underlying controlled muscle pressures can be considered as ideal
control inputs of the outer control

u =
[
ul
ur

]
=

[
pMl
pMr

]
. (13)

Subsequent differentiation of the first flat output candidate until one of the control inputs
appears leads to

y1 = zC, (14a)

ẏ1 = żC, (14b)

ÿ1 =
aM
k ·m (FMr − FMl)− 1

m
FU = z̈C (zC, żC, pMl , pMr, FU) , (14c)

whereas the second variable directly depends on the control inputs

y2 = pM = 0.5 (pMl + pMr) . (15)
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The disturbance force FU is estimated by a disturbance observer and used for disturbance
compensation. Due to the differential flatness of the system, the inverse dynamics can be
obtained by solving the equations (14) and (15) for the input variables

u =
1

aM ( f1l + f1r)

[
aM f2l − aM f2r − kmz̈C − kFU + 2aMpM f1r
aM f2r − aM f2l + kmz̈C + kFU + 2aMpM f1l

]
. (16)

3.1 Sliding mode control
Now, the tracking error ez = zCd − zC can be stabilised by sliding mode control. For this
purpose, the following sliding surface sz is defined for the outer control loop in the form

sz = żCd − żC + α (zCd − zC) . (17)

At this, the coefficient α must be chosen positive in order to obtain a Hurwitz-polynomial. The
convergence to the sliding surfaces in face of model uncertainty can be achieved by specifying
a discontinuous signum-function

ṡz = −Wz · sign(sz), Wz > 0. (18)

With a properly chosen positive coefficient Wz dominating the corresponding model
uncertainties, the sliding surface sz = 0 is reached in finite time depending on the initial
conditions. This leads to the stabilising control law for each crank angle

υz = q̈id + α · (żCd − żC) +Wz · sign(sz). (19)

Here, the carriage position zC, the carriage velocity żC, the desired trajectory for the carriage
position zCd and their first two time derivatives have to be provided. For the second stabilising
control input υp, the desired trajectory for the mean pressure pMd is directly utilised in a
feedforward manner, i.e., υp = pMd. Inserting these new defined inputs into (16), the inverse
dynamics becomes

u =
1

aM ( f1l + f1r)

[
aM f2l − aM f2r − kmυz − kFU + 2aMυp f1r
aM f2r − aM f2l + kmυz + kFU + 2aMυp f1l

]
. (20)

Having once reached the sliding surfaces, the final sliding mode is maintained during
trajectory tracking provided that the tracking error ez = zCd − zC is governed by an
asymptotically stable first-order error dynamics

ėz + α · ez = 0. (21)

Then, a globally asymptotically stable tracking of desired trajectories for the carriage position
is guaranteed leading to

lim
t→∞

ez(t) = 0. (22)

For reduction of high frequency chattering the switching function sign(sz) in (19) can be
replaced by the smooth function tanh

( sz
ε

)
, ε > 0

υz = z̈Cd + α · (żCd − żC) +Wz · tanh
( sz

ε

)
. (23)

This regularisation, however, implicates a non-ideal slidingmodewithin a resulting boundary
layer determined by the parameter ε in the switching function.
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3.2 Higher-order sliding mode control
An alternative method to reduce high frequency chattering effects is to employ higher-order
sliding mode techniques for control design, Levant (2008). For this approach the control
derivative is considered as a new control input. Containing an integrator in the dynamic
feedback law, real discontinuities in the control input are avoided at higher-order sliding
mode. In this contribution a quasi-continuous second-order sliding mode controller as
proposed in Levant (2005) is utilised. Then the tracking error is stabilised by the following
control law

υz = α
ṡz + β |sz|

1
2 sign (sz)

|ṡz| + β |s| 12
. (24)

In Pukdeboon et al. (2010) a slightly modified version of this controller is introduced. For a
reduction of the chattering phenomena, a small positive scalar ν is added to the denominator
of (24). Then the smoothed control law is given by

υz = α
ṡz + β |sz|

1
2 sign (sz)

|ṡz| + β |s| 12 + ν

. (25)

For further reduction of the chattering phenomena, similar to the first-order sliding mode
control law (23) the discontinuous function sign (sz) in (25) can be replaced by the smooth
function tanh

( sz
ε

)
, ε > 0. Again, the new control input υz has to be inserted in the inverse

dynamics (16), at which the second control input υp remains the same.

3.3 Proxy-based sliding mode control
Proxy-based sliding mode control is a modification of sliding mode control as well as an
extension of PID-control, see Kikuuwe & Fujimoto (2006), Van-Damme et al. (2007). The
basic idea is to introduce a virtual carriage, called proxy, which is controlled using sliding
mode techniques, whereas the proxy is connected to the real carriage by a PID-type coupling
force, see Fig. 5. The goal of proxy-based sliding mode is to achieve precise tracking during
normal operation and smooth, overdamped recovery in case of large position errors. The
sliding mode control law for the virtual carriage results from equation (19) with zS denoting
the carriage position of the proxy

υa = z̈Cd + α · (żCd − żS) +Wz · tanh
(
żCd − żs + α (zCd − zS)

ε

)
. (26)

The PID-type virtual coupling between the proxy and the real carriage is given by

υc = KI

∫
(zS − zC) dt+ KP (zS − zC) + KD (żs − żC) . (27)

Assuming a proxy with vanishing mass, the condition υa = υc holds. By introducing the
new variable a as integrated difference between the real and the virtual carriage position a =∫

(zS − zC)dt, the virtual coupling (27) and the stabilising proxy-based sliding mode control
law (26) result in (Kikuuwe & Fujimoto (2006))

υc = KIa + KPȧ+ KDä , (28)

υa = z̈Cd + αėz − αä +Wztanh
(
ėz + αez − αȧ− ä

ε

)
. (29)

The implementation of the control law is shown in the right part of Fig. 5.
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4. Control of internal muscle pressure

The internal pressures of the pneumatic muscles are controlled separately with high accuracy
in fast underlying control loops. The pneumatic subsystem represents a differentially flat
system with the internal muscle pressure as flat output, see Aschemann & Schindele (2008).
Hence, equation (10) can be solved for the input variable

uMi =
1

kui (Δ�Mi, pMi)
[ ṗMi + kpi

(
Δ�Mi,Δ�̇Mi, pMi

)
pMi] . (30)

The contraction length Δ�Mi as well as its time derivative Δ�̇Mi can be considered as
scheduling parameters in a gain-scheduled adaptation of kui and kpi. With the internal
pressure as flat output, its first time derivative ṗMi = υi is introduced as new control input.
The error dynamics of each muscle pressure pMi, i = {l, r}, can be asymptotically stabilised
by the following control law

υi = ṗMid + ai · (pMid − pMi) , (31)

where the constant ai is determined by pole placement. By introducing the definition ei =
pMid − pMi for the control error w.r.t. the internal muscle pressure, the corresponding error
dynamics is governed by the following first order differential equation

ėi + ai · ėi = 0 . (32)

5. Feedforward friction compensation

The main part of the friction is considered by a dynamical friction model in a feedforward
manner. For this purpose, the LuGre friction model, introduced by de Wit et al. (1995), is
employed. This frictionmodel is capable of describing the Stribeck effect, hysteresis, stick-slip
limit cycling, presliding displacement as well as rising static friction

ż = żCd − |żCd|
g (żCd)

z , (33)

FFr = σ0z+ σ1 ż+ σ2 żCd , (34)

where the function g (żCd) is given by

g (żCd) = FC + (FS − FC) e−
(

żCd
vS

)2
. (35)
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Here, the internal state variable z describes the deflection of the contact surfaces. The model
parameters are given by the static friction FS, the Coulomb friction FC and the Stribeck
velocity vS. The parameter σ0 is the stiffness coefficient, σ1 the damping coefficient and σ2 the
viscous friction coefficient. All parameters have been identified using nonlinear least square
techniques.

6. Reduced nonlinear disturbance observer

Disturbance behaviour and tracking accuracy in view of model uncertainties can be
significantly improved by introducing a compensating control action provided by a nonlinear
reduced-order disturbance observer as described in Friedland (1996). The observer design is
based on the equation of motion. The key idea for the observer design is to extend the state
equation with integrators as disturbance models

ẏ = f (y, FU,u) ,

ḞU = 0 ,
(36)

where y =
[

q q̇
]T denotes the measurable state vector. The estimated disturbance force F̂U

is obtained from F̂U = hTy + z with the chosen observer gain vector hT.

hT =
[
h1 h1

]
. (37)

The state equation for z is given by

ż = Φ
(
y, F̂U ,u

)
. (38)

The observer gain vector h and the nonlinear function Φ have to be chosen such that the
steady-state observer error e = FU − F̂U converges to zero. Thus, the function Φ can be
determined as follows

ė = 0 = ḞU − hTf
(
y, F̂U ,u

)− Φ (y, FU ,u) . (39)

In view of ḞU = 0, equation (39) yields

Φ (y, FU,u) = −hTf
(
y, F̂Uu

)
. (40)

The linearised error dynamics ė has to be made asymptotically stable. Accordingly, all
eigenvalues of the Jacobian

Je =
∂Φ (y, FU ,u)

∂FU
(41)

must be located in the left complex half-plane. This can be achieved by proper choice of the
observer gain h1. The stability of the closed-loop control system has been investigated by
thorough simulations.

7. Control implementation

For the implementation at the test rig the control structure as depicted in Fig. 6 has been used.
Fast underlying pressure control loops achieve an accurate tracking behaviour for the desired
pressures stemming from the outer control loop. The nonlinear valve characteristic (VC) has
been identified by measurements, see Aschemann & Schindele (2008), and is compensated by
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Figure 6. Implementation of the cascaded control structure.

its approximated inverse valve characteristic (IVC) in each input channel. For each pulley
tackle one pneumatic muscle is equipped with a piezo-resistive pressure sensor mounted
at the connection flange that connects the muscle with the connection plate. The carriage
position zC is obtained by a linear incremental encoder providing high resolution. The
carriage velocity żC is derived from the carriage position zC by means of real differentiation
using a DT1-System with the corresponding transfer function GDT1(s) = s

T1s+1 . The desired
value for the time derivative of the internal muscle pressure can be obtained either by real
differentiation of the corresponding control input pMi in (16) or by model-based calculation
using only desired values, i.e.

ṗMid = ṗMid

(
zCd, żCd, z̈Cd,

...
z Cd, pMd, ṗMd, F̂U,

˙̂FU
)
. (42)

The corresponding desired trajectories are obtained from a trajectory planning module that
provides synchronous time optimal trajectories according to given kinematic and dynamic
constraints. It becomes obvious that a continuous time derivative ṗMid requires a three times
continuously differentiable desired carriage trajectory. In (42) the time derivative of F̂U is
needed. Considering equation (38) and the first time derivatives of the system states, the
value of ˙̂FU can be obtained as follows

˙̂FU = hT ẏ + ż. (43)

8. Experimental results

Both tracking performance and steady-state accuracy w.r.t. the carriage position zC have been
investigated by experiments at the test rig of the Chair ofMechatronics, University of Rostock.
It is equipped with four pneumatic muscles DMSP-20 from FESTOAG. The control algorithm
has been implemented on a dSpace real time system. For the experiments the trajectory shown
in Fig. 7 have been used. Here the desired carriage position varies in an interval between
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Figure 7. Desired values for the carriage position, velocity, and acceleration. Corresponding
control error ez = zCd − zC for standard sliding mode control.
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−0.35 m and 0.35 m. The maximum velocities are approximately 1.3 m/s and the maximum
accelerations are about 5 m/s2. The resulting tracking errors for the carriage ez = zCd − zC
are shown in the right lower part of Fig. 7. As for the carriage position, the maximum
tracking error during the acceleration and deceleration intervals is approximately 3.5mm. The
maximum steady-state error is approximately 0.6 mm. Fig. 8 shows the corresponding desired
and actual values of the internal muscle pressure. Obviously, the underlying fast control
loops achieve a precise tracking of the desired values, which stem from the outer decoupling
control loop. Due to a time-optimal trajectory planning using desired ansatzfunctions with
limited jerk as described in Aschemann & Hofer (2005), the admissible range of the internal
muscle pressure is not exceeded. In Fig. 9 the different control approaches, introduced in
this contribution, are compared concerning the control error ez. The higher-order sliding
mode (HOSM) control approach results in a slightly larger maximum tracking error than
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Figure 9. Comparison of different control approaches concerning the corresponding control
errror ez: Proxy-based sliding mode control (PBSM), Higher-order sliding mode control
(HOSM) and standard sliding mode control (SM).

with the standard slidingmode technique (SM). Nevertheless, the steady-state accuracy of the
HOSM approach is superior to the other approaches. As the chattering phenomena is reduced
by HOSM control the parameter ε in equation (25) can be chosen very small, so that the
hyperbolic tangent function is very close to the ideal switching-function. The parameter ε in
(23) have to be chosen about 100 times larger as compared to the value in HOSM, to avoid the
high-frequency chattering, which is critical for the proportional valves and results in a reduced
lifetime of the valves. The largest tracking errors occur with proxy-based slidingmode (PBSM)
control, which represents a PID-controller at normal operation. The benefits of the PBSM
control are its high robustness and its slow and safe recovery from unexpected disturbances
and abnormal events, which leads to an inherent safety property. In Fig. 10 the impact of
the feedforward friction compensation and the nonlinear reduced disturbance observer is
demonstrated. Here the tracking errors of SM control with feedforward friction compensation
(f.f.c.) and disturbance observer (d.o.), SM control only with f.f.c and SM control without f.f.c.
and d.o. are depicted. As can be seen the tracking errors can be significantly reduced by
employing the proposed disturbance compensation strategy. The sum of the feedforward
friction force FFr and the disturbance force estimated by the disturbance observer F̂U is
depicted in Fig. 11. The robustness of the proposed solution is shown by a unmodelled
additional mass of 25 kg, which represents almost the double of the nominal value. In the
corresponding force, the increase due to the higher inertial forces becomes obvious. The
corresponding tracking errors are shown in Fig. 12. All three control approaches show similar
results. Whereas the steady-state errors remain almost unchanged, the maximum tracking
errors are now approximately 8 mm due to the inertia forces during the acceleration and
deceleration phases. The closed-loop stability is not affected by this parametric uncertainty.
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9. Conclusions

In this paper, a nonlinear cascaded trajectory control was presented for a new linear axis
driven by pneumatic muscles that offers a significant increase in both workspace and
maximum velocity as compared to a directly actuated solution. Furthermore, the proposed
setup requires a relativ small overall size in comparison to a drive concept with an rocker as in
Aschemann & Schindele (2008). The modelling of this mechatronic system leads to nonlinear
system equations of fourth order containing identified polynomial descriptions of the main
nonlinearities of the pneumatic subsystem: the characteristic of the pneumatic valve and the
characteristics of the pneumatic muscle. The inner control loops of the cascade involve a
decentralised control of the internal muscle pressures with high bandwidth. For the outer
control loop different sliding mode control approaches have been investigated leading to a
decoupling of the carriage position and the mean pressure as controlled variables. Thereby,
critical high frequency chattering can be avoided either by a regularisation of the switching
function or by using a second-order sliding mode controller. Model uncertainties in the
muscle force characteristic as well as nonlinear friction are directly taken into account by
a compensation scheme consisting of a feedforward friction compensation and a nonlinear
reduced disturbance observer. Experimental results emphasise the excellent closed-loop
performance with maximum position errors of approximately 4 mm. The robustness of the
proposed control is shown by measurements with an almost doubled carriage mass.
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1. Introduction 
Studies of braking mechanisms of railway rolling stocks focus on the adhesion force, which 
is the tractive friction force that occurs between the rail and the wheel (Kadowaki, 2004). 
During braking, the wheel always slips on the rail. The adhesion force increases or decreases 
according to the slip ratio, which is the difference between the velocity of the rolling stocks 
and the tangential velocity of each wheel of the rolling stocks normalized with respect to the 
velocity of the rolling stocks. A nonzero slip ratio always occurs when the brake caliper 
holds the brake disk, and thus the tangential velocity of the wheel so that the velocity of the 
wheel is lower than the velocity of the rolling stocks. Unless an automobile is skidding, the 
slip ratio for an automobile is always zero. In addition, the adhesion force decreases as the 
rail conditions change from dry to wet (Isaev, 1989). Furthermore, since it is impossible to 
directly measure the adhesion force, the characteristics of the adhesion force must be 
inferred based on experiments (Shirai, 1977). 
To maximize the adhesion force, it is essential to operate at the slip ratio at which the 
adhesion force is maximized. In addition, the slip ratio must not exceed a specified value 
determined to prevent too much wheel slip. Therefore, it is necessary to characterize the 
adhesion force through precise modeling. 
To estimate the adhesion force, observer techniques are applied (Ohishi, 1998). In addition, 
based on the estimated value, wheel-slip brake control systems are designed (Watanabe, 
2001). However, these control systems do not consider uncertainty such as randomness in 
the adhesion force between the rail and the wheel. To address this problem, a reference slip 
ratio generation algorithm is developed by using a disturbance observer to determine the 
desired slip ratio for maximum adhesion force. Since uncertainty in the traveling resistance 
and the mass of the rolling stocks is not considered, the reference slip ratio, at which 
adhesion force is maximized, cannot always guarantee the desired wheel slip for good 
braking performance.  
In this paper, two models are developed for the adhesion force in railway rolling stocks. The 
first model is a static model based on a beam model, which is typically used to model 
automobile tires. The second model is a dynamic model based on a bristle model, in which 
the friction interface between the rail and the wheel is modeled as contact between bristles 
(Canudas de Wit, 1995). The validity of the beam model and bristle model is verified 
through an adhesion test using a brake performance test rig. 
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We also develop wheel-slip brake control systems based on each friction model. One control 
system is a conventional PI control scheme, while the other is an adaptive sliding mode 
control (ASMC) scheme. The controller design process considers system uncertainties such 
as the traveling resistance, disturbance torque, and variation of the adhesion force according 
to the slip ratio and rail conditions. The mass of the rolling stocks is also considered as an 
uncertain parameter, and the adaptive law is based on Lyapunov stability theory. The 
performance and robustness of the PI and adaptive sliding mode wheel-slip brake control 
systems are evaluated through computer simulation. 

2. Wheel-slip mechanism for rolling stocks 
To reduce braking distance, automobiles are fitted with an anti-lock braking system (ABS) 
(Johansen, 2003). However, there is a relatively low adhesion force between the rail and the 
wheel in railway rolling stocks compared with automobiles. A wheel-slip control system, 
which is similar to the ABS for automobiles, is currently used in the brake system for 
railway rolling stocks. 
The braking mechanism of the rolling stocks can be modeled by 

 ( )aF Nμ λ=  (1) 

 v r
v

ωλ −
=  (2) 

where aF  is the adhesion force, ( )μ λ is the dimensionless adhesion coefficient, λ  is the slip 
ratio, N  is the normal force, v  is the velocity of the rolling stocks, and ω  and r  are the 
angular velocity and radius of each wheel of the rolling stocks, respectively. The velocity of 
the rolling stocks can be measured (Basset, 1997) or estimated (Alvarez, 2005). The adhesion 
force aF  is the friction force that is orthogonal to the normal force. This force disturbs the 
motion of the rolling stocks desirably or undesirably according to the relative velocity 
between the rail and the wheel. The adhesion force aF  changes according to the variation of 
the adhesion coefficient ( )μ λ , which depends on the slip ratio λ , railway condition, axle 
load, and initial braking velocity, that is, the velocity at which the brake is applied. Figure 1 
shows a typical shape of the adhesion coefficient ( )μ λ  according to the slip ratio λ  and rail 
conditions. 
To design a wheel-slip control system, it is useful to simplify the dynamics of the rolling 
stocks as a quarter model based on the assumption that the rolling stocks travel in the 
longitudinal direction without lateral motion, as shown in Fig. 2 the equations of motion for 
the quarter model of the rolling stocks can be expressed as 

 a b dJ B T T Tω ω= − + − −  (3) 

 a rMv F F= − −  (4) 

where B  is the viscous friction torque coefficient between the brake pad and the wheel, 
a aT rF=  and bT  are the adhesion and brake torques, respectively, dT  is the disturbance 

torque due to the vibration of the brake caliper, J  and r  are the inertia and radius, 
respectively, of each wheel of the rolling stocks, and M  and  rF  are the mass and traveling 
resistance force of the rolling stocks, respectively. 
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Fig. 2. Quarter model of the rolling stocks. 

From (3) and (4), it can be seen that, in order to achieve sufficient adhesion force, a large 
brake torque bT  must be applied. When bT  is increased, however, the slip ratio increases, 
which causes the wheel to slip. When the wheel slips, it may develop a flat spot on the 
rolling surface. This flat spot affects the stability of the rolling stocks, the comfort of the 
passengers, and the life cycle of the rail and the wheel. To prevent this undesirable braking 
situation, a desired wheel-slip control is essential for the brake system of the rolling stocks. 
In addition, the adhesion force between the wheel and the contact surface is dominated by 
the initial braking velocity, as well as by the mass M and railway conditions. In the case of 
automobiles, which have rubber pneumatic tires, the maximum adhesion coefficient 
changes from 0.4 to 1 according to the road conditions and the materials of the contact 
surface (Yi, 2002). In the case of railway rolling stocks, where the contact between the wheel 
and the rail is that of steel on steel, the maximum adhesion force coefficient changes from 
approximately 0.1 to 0.4 according to the railway conditions and the materials of the contact 
surface (Kumar, 1996). Therefore, railway rolling stocks and automobiles have significantly 
different adhesion force coefficients because of different materials for the rolling and contact 
surfaces. However, the brake characteristics of railway rolling stocks (Jin, 2004) and 
automobiles (Li, 2006) are similar.  
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According to adhesion theory, the maximum adhesion force occurs when the slip ratio is 
approximately between 0.1 and 0.4 in railway rolling stocks. Therefore, the slip ratio at 
which the maximum adhesion force is obtained is usually used as the reference slip ratio for 
the brake control system of the rolling stocks. Figure 3 shows an example of a wheel-slip 
control mechanism based on the relationship between the slip ratio and braking 
performance. 
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Fig. 3. Example of a wheel-slip control mechanism based on the relationship between the 
slip ratio and braking performance. 
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Fig. 4. Simplified contact model for the rail and wheel. 

3. Static adhesion force model based on the beam model 
To model the adhesion force as a function of the slip ratio, we consider the beam model, 
which reflects only the longitudinal adhesion force. Figure 4 shows a simplified contact 
model for the rail and wheel, where the beam model treats the wheel as a circular beam 
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supported by springs. The contact footprint of an automobile tire is generally approximated 
as a rectangle by the beam model (Sakai, 1987). In a similar manner, the contact footprint 
between the rail and the wheel is approximated by a rectangle as shown in Fig. 5. 
 

 
Fig. 5. Contact footprint between the rail and the wheel. 

The contact pressure p  between the rail and the wheel at the displacement cx  from the tip 
of the contact footprint in the longitudinal direction is given by (Sakai, 1987) 

 
2 2

3
6

2 2c
N l lp x

l w

⎡ ⎤⎛ ⎞ ⎛ ⎞= − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (5) 

where N  is the normal force, and l  and w  are the length and width of the contact 
footprint, respectively. Figure 6 shows a typical distribution of the tangential force 
coefficient in a contact footprint (Kalker, 1989). 
In Fig. 6, the variable xf , which is the derivative of the adhesion force aF  with respect to the 
displacement cx  from the tip of the contact footprint, is given by 

 
0 ,

,
x c c h

x
d h c

C wx for x l
f

p for l x l
λ

μ
≤ ≤⎧

= ⎨ < ≤⎩
 (6) 

where xC  is the modulus of transverse elasticity, hl  is the displacement from the tip of the 
contact footprint at which the adhesion-force derivative xf  changes rapidly, and dμ  is the 
dynamic friction coefficient. In particular, dμ  is defined by 

 d max ( )h

a vl
l l
λμ μ= −
−

 (7) 

where maxμ  is the maximum adhesion coefficient, a  is a constant that determines the 
dynamic friction coefficient in the slipping regime, and hl  is expressed as (Sakai, 1987) 

 
max

1
3

x
h

Kl l
μ N

λ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (8) 
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where xK  is the traveling stiffness calculated by 

 21
2x xK C l=  (9) 

The wheel load, which is the normal force, is equal to the integrated value of the contact 
pressure between the rail and the wheel over the contact footprint. Therefore, the adhesion 
force aF  between the rail and the wheel can be calculated by integrating (6) over the length 
of the contact footprint and substituting (7) and (8) into (6), which is expressed as 

 

( )

( )

2
2

max
3

max
max

1 1 31
2 3 2 2

21 1 3 1 1 .
2 3

x
a x x

x

x

KF C wl K Na v r
μ N

Na v r KN
K N

λ
λ λ ω

ω λ
μ

λ μ

⎛ ⎞
= − + − −⎜ ⎟

⎝ ⎠
⎡ ⎤⎡ ⎤ ⎛ ⎞− ⎢ ⎥− − − −⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

 (10) 
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Fig. 6. A typical distribution of the tangential force coefficient in a contact footprint.  

4. Dynamic adhesion force model based on bristle contact 
As a dynamic adhesion force model, we consider the Dahl model given by (Dahl, 1976) 

 
c

dz z
dt F

α σ
σ= −  (11) 

 F zα=  (12) 

where z  is the internal friction state, σ  is the relative velocity, α is the stiffness coefficient, 
and F  and cF  are the friction force and Coulomb friction force, respectively. Since the 
steady-state version of the Dahl model is equivalent to Coulomb friction, the Dahl model is a 
generalized model for Coulomb friction. However, the Dahl model does not capture either 
the Stribeck effect or stick-slip effects. In fact, the friction behavior of the adhesion force 
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according to the relative velocity σ  for railway rolling stocks exhibits the Stribeck effect, as 
shown in Fig. 7. Therefore the Dahl model is not suitable as an adhesion force model for 
railway rolling stocks. 
 

 
Fig. 7. Typical shape of the general friction force and adhesion force in railway rolling stocks 
according to the relative velocity. 

However, the LuGre model (Canudas de Wit, 1995), which is a generalized form of the Dahl 
model, can describe both the Stribeck effect and stick-slip effects. The LuGre model 
equations are given by  

 
( )

dz z
dt g

α σ
σ

σ
= −  (13) 

 ( ) 2/( ) ( ) sv
c s cg F F F e σσ −= + −  (14) 

 1 2F z zα α α σ= + +  (15) 

where z  is the average bristle deflection, sv  is the Stribeck velocity, and sF  is the static 
friction force. In addition, α , 1α , and 2α  are the bristle stiffness coefficient, bristle 
damping coefficient, and viscous damping coefficient, respectively.  
The functions g() and F in (14) and (15) are determined by selecting the exponential term in 
(14) and coefficients α, α1, and α2 in (15), respectively, to match the mathematical model 
with the measured friction. For example, to match the mathematical model with the 

measured friction, the standard LuGre model is modified by using 
1
2/ sve σ−  in place of the 

term ( )2/ sve σ− in (14). Furthermore, for the tire model for vehicle traction control, the 
function F given by (15) is modified by including the normal force. Thus, (13)-(15) are 
modified as (Canudas de Wit, 1999) 

 
( )
'dz z

dt g
α σ

σ
σ

= −  (16) 

 
1
2/( ) ( ) sv

c s cg e σσ μ μ μ −= + −  (17) 
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 1 2( )F z z Nα α α σ′ ′ ′= + +  (18) 

where sμ  and cμ  are the static friction coefficient and Coulomb friction coefficient, 

respectively, N mg=  is the normal force, m is the mass of the wheel, and ,

N
αα = , , 1

1 N
αα = , 

and , 2
2 N

αα =  are the normalized wheel longitudinal lumped stiffness coefficient, 

normalized wheel longitudinal lumped damping coefficient, and normalized viscous 
damping coefficient, respectively.  
In general, it is difficult to measure and identify all six parameters, α , 1α , 2α , sF , cF , and 

sv  in the LuGre model equations. In particular, identifying friction coefficients such as α  
and 1α  requires a substantial amount of experimental data (Canudas de Wit, 1997). We thus 
develop a dynamic model for friction phenomena in railway rolling stocks, as shown in  
Fig. 7. The dynamic model retains the simplicity of the Dahl model while capturing the 
Stribeck effect. 
As shown in Fig. 8 (Canudas de Wit, 1995), the motion of the bristles is assumed to be the 
stress-strain behavior in solid mechanics, which is expressed as 

 [ ]1 ( )a
a

dF h F
dx

α σ= −  (19) 

where aF  is the adhesion force, α  is the coefficient of the dynamic adhesion force, and x  
and σ  are the relative displacement and velocity of the contact surface, respectively. In 
addition, the function ( )h σ  is selected according to the friction characteristics. 
 

 
Fig. 8. Bristle model between the rail and the wheel.  

Defining z  to be the average deflection of the bristles, the adhesion force aF  is assumed to 
be given by 

 aF zα=  (20) 

The derivative of aF  can then be expressed as  

 [ ]1 ( )a a a
a

dF dF dFdx dzh F
dt dx dt dx dt

σ α σ σ α= = = − =  (21) 

It follows from (20) and (21) that the internal state z  is given by  

 ( ) ( )1 1az h F h zσ σ σ α σ= ⎡ − ⎤ = ⎡ − ⎤⎣ ⎦ ⎣ ⎦ . (22) 
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To select the function ( )h σ  for railway rolling stocks, the term / sve σ−  is used in place of 
( )2/ sve σ−  in (14). This term is simplified by executing the Taylor series expansion for / sve σ−  

and by taking only the linear term 1
sv

σ
− . In addition, neglecting the coefficients 1α  and 2α  

in (15) for simplicity yields 

 ( ) ( ) 1 ( ) .c s c s s c
s s

g F F F F F F
v v
σ σσ

⎛ ⎞
= + − − = − −⎜ ⎟

⎝ ⎠
 (23) 

By comparing (13) and (23) with (22) and by considering the relative velocity σ , which is 
positive in railway rolling stocks, ( )h σ in (22) can be derived as 

 ( )h βσ
γ σ

=
−

 (24) 

where 1
s

s c
v

F F
β =

−
 and s

s
s c

F v
F F

γ =
−

. In general, β and γ  are positive tuning parameters 

because Fs is larger than Fc as shown in Fig. 7 In the dynamic model, the parameter α is the 
coefficient for the starting point of the slip regime, where the adhesion force decreases 
according to the relative velocity, and the parameters β and γ are the coefficients for the 
slope and shift in the slip regime, respectively.  

5. Verification of the adhesion force models 
To verify the adhesion force models, experiments using a braking performance test rig in the 
Railway Technical Research Institute in Japan and computer simulations are carried out 
under various initial braking velocity conditions. Figure 9 shows the test rig for the braking 
performance test. The conceptual schematic diagram is shown in Fig. 10. This test rig 
consists of a main principal axle with a wheel for rolling stocks on a rail, flywheels, a main 
motor, a sub-axle with a wheel, and a brake disk. After accelerating to the target velocity by 
the main motor, the brake caliper applies a brake force to the wheel. The inertia of the 
flywheels plays the role of the inertia of the running railway rolling stocks. 
 

 
Fig. 9. Test rig for the brake performance test.   
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Fig. 10. Conceptual schematic diagram of the test rig for the brake performance test. 

The test conditions are shown in Table 1. During the experiments, the brake torque bT , the 
wheel load N , the angular velocity of the wheel ω , and the velocity of the rolling stocks v  
are measured simultaneously. The adhesion torque aT  between the rail and the wheel used 
in the calculation of the adhesion coefficient is also estimated in real time. As in the case of 
running vehicles, it is impossible to measure the adhesion torque directly on the brake 
performance test rig.  
 

Test Condition Value 

Initial braking velocity 30, 60, 100, 140 km/h 

Slip ratio 0 – 50% 

Wheel load 34.5 kN 

Wheel inertia 60.35 kg-m2 

Viscous friction torque coefficient 0.25 N-m-s 

Table 1. Test conditions of the test rig for the brake performance test  

It is essential that knowledge of the adhesion torque be available for both ABS in 
automobiles and wheel-slip control of rolling stocks. However, it is difficult to directly 
acquire this information. While an optical sensor, which is expensive (Basset, 1997), can be 
used to acquire this information, the adhesion force between the wheel and the rail is 
estimated through the application of a Kalman filter (Charles, 2006). By using this scheme, 
the adhesion force can be estimated online during the normal running of the vehicle before 
the brake is applied. A disturbance observer considering the first resonant frequency of the 
rolling stocks is designed in order to avoid undesirably large wheel slip, which causes 
damage to the rail and wheel (Shimizu, 2007). A sliding mode adhesion-force observer using 
the estimation error of the wheel angular velocity and based on a LuGre model can be used 
for this purpose (Patel, 2006).  
We now consider an adhesion-torque observer for estimation. In (3), we neglect the 
unknown disturbance torque of the wheel dT  because the dominant disturbance torque 
caused by the vibration of the brake caliper acts only for a moment in the initial braking 
time. Then the adhesion torque aT  is expressed as 



Adaptive Sliding Mode Control of Adhesion Force in Railway Rolling Stocks   

 

395 

 a bT J B Tω ω= + +  (25) 

Taking Laplace transforms yields 

 ( )( ) ( ) ( )a bT s Js s B s T sω ω= + +  (26) 

Since a differential term is included in (26), we implement a first-order lowpass filter of the 
form 

 
τ

ˆ ( ) ( ) ( ) ( )
1a b

JsT s s B s T s
s

ω ω= + +
+

 (27) 

or 

 ˆ ( ) ( ) ( )
1a b

JJT s B s T s
s

τ
ω

τ τ
⎛ ⎞

= + − +⎜ ⎟
+⎝ ⎠

 (28) 

where τ  is the time constant of the lowpass filter in the adhesion-torque observer, which is 
illustrated in Fig. 11. The estimated adhesion coefficient μ̂  can now be obtained by  

 
ˆ

ˆ aT
Nr

μ =  (29) 

 
aT

Js1
1
+sτ

bT ω

aT̂

aT

bT

− +

+ +

− +

BJs +
1

ω

BJs +
1

B
+

1+s
J

τ
τ

aT̂

+ −
+

τJB +

 
Fig. 11. Adhesion-torque observer. 
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As shown by the experimental wheel-slip results in Fig. 12, before 4.5 s, the velocity v  of the 
rolling stocks matches the tangential velocity wv rω=  of the wheel, where r  and ω  are the 
radius and angular velocity of the wheel, respectively, while a large difference occurs 
between the velocity of the rolling stocks and the tangential velocity of the wheel at 4.5 s 
when a large brake torque is applied. This difference means that large wheel slip occurs as a 
result of braking. The controller ceases the braking action at 6.1 s when the slip ratio exceeds 
50%. Henceforth, the tangential velocity of the wheel recovers, and the slip ratio decreases to 
zero by the adhesion force between the rail and the wheel. In the experiment, to prevent 
damage due to excessive wheel slip, the applied brake torque is limited so that the slip ratio 
does not exceed 50%.  
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Fig. 12. Experimental wheel-slip results.  

Table 2 shows the parameters of the adhesion force models for computer simulation. In 
Table 2, the parameter values for the length l  and the width w  of the contact footprint are 
taken from (Uchida, 2001). The constant a  in (7) for the beam model is determined as 0.0013 
h/km based on the adhesion experimental results at the initial braking velocity of 140 
km/h.  
 

Parameter Notation Value 

Modulus of transverse elasticity xC  1.52×109 N/m2 

Length l  0.019 m 

Width w  0.019 m 

Wheel load N  34.5 kN 

Maximum adhesion coefficient 
for v0 = 30, 60, 100, 140 km/h maxμ  0.360, 0.310, 

0.261, 0.226 

Radius of the wheel r  0.43 m 

Table 2. Parameters of the beam and bristle models for computer simulation.  
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Figure 13 shows experimental and simulation results of the adhesion coefficient according 
to the slip ratio and initial braking velocity. As shown in Fig. 13, the variation of the 
adhesion coefficients obtained by the experiments is large. It is therefore difficult to 
determine a precise mathematical model for the adhesion force. In spite of these large 
variations, it is found that the experimental results of the mean value of the adhesion 
coefficient according to the slip ratio are consistent with the simulation results based on the 
two kinds of adhesion force models. Table 3 shows the mean values of the absolute errors 
between the experimental results for the mean value of the adhesion coefficient and the 
simulation results for the beam and bristle models according to the initial braking velocity 
of the rolling stocks. Mean values of the absolute errors in the relevant range of the initial 
braking velocity for the beam and bristle models are 0.011 and 0.0083, respectively. Using 
the bristle model in place of the beam model yields 24.5% improvement in accuracy. 
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(b) Initial braking velocity v0 = 100 km/h 
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(c) Initial braking velocity v0 = 60 km/h 
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(d) Initial braking velocity v0 = 30 km/h 

Fig. 13. Experimental and simulation results of the adhesion coefficient. 
 

Initial braking
velocity

Adhesion model 
30 km/h 60 km/h 100 km/h 140 km/h 

Beam model 0.0130 0.0085 0.0132 0.0093 
Bristle model 0.0080 0.0080 0.0102 0.0077 

Table 3. Mean values of the absolute errors between the experimental results for the mean 
value of the adhesion coefficient and the simulation results for the beam and bristle models. 

From the experimental results in Fig. 13, the parameters α , β , and γ  of the bristle model 
(19) - (22), (24) can be expressed as 
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 4 2 1 2
0 05.455 10 3.641 10 3.798 10v vα −= × − × + ×  (30) 

 2 5 8 2
0 01.873 10 6.059 10 5.500 10v vβ − − −= × − × + ×  (31) 

 2 1 4 2
0 02.345 10 8.620 10 1.053 10v vγ − −= × − × + ×  (32) 

where 0v  is the initial braking velocity of the rolling stocks. The coefficients in (30), (31), and 
(32) are obtained by curve fitting for the values of the parameters according to the initial 
braking velocity. 
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Fig. 14. Simulation results of the mean value of the adhesion coefficient for the beam model.  
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Fig. 15. Simulation results of the mean value of the adhesion coefficient for the bristle model. 
Simulation results of the mean value of the adhesion coefficients for the beam model and 
bristle model according to the slip ratio and initial braking velocity, respectively, are shown 
in Fig. 14 and 15. These results show a similar tendency for the change in the initial braking 
velocity conditions. However, the adhesion force model based on the beam model cannot 
represent the dynamic characteristics of friction. The beam model is obtained by curve 
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fitting the experimental results on the adhesion force, while the bristle model, which 
includes the friction dynamics, describes the effect of the initial braking velocity accurately 
in the adhesion regime, where the adhesion force increases according to the slip ratio, as 
shown in Fig. 15. Therefore, the bristle model is more applicable than the beam model for 
the desired wheel-slip controller design.  

6. Desired wheel slip using adaptive sliding mode control  
The desired wheel-slip brake control system is designed by using an adaptive sliding mode 
control (ASMC) scheme to achieve robust wheel-slip brake control. In the controller design 
process, the random value of adhesion torque, the disturbance torque due to the vibration of 
the brake caliper, and the traveling resistance force of the rolling stocks are considered as 
system uncertainties. The mass of the rolling stocks and the viscous friction torque 
coefficient are also considered as parameters with unknown variations. The adaptive law for 
the unknown parameters is based on Lyapunov stability theory.  
The sliding surface s  for the design of the adaptive sliding mode wheel-slip brake control 
system is defined as 

 
0

t
s e edtρ= + ∫  (33) 

where de σ σ= − is the tracking error of the relative velocity, v v rσ λ ω= = −  is the relative 
velocity, dσ  is the reference relative velocity, and ρ  is a positive design parameter.  
The sliding mode control law consists of equivalent and robust control terms, that is,  

 b eq rT U U= +  (34) 

where eqU  and rU  are the equivalent and robust control terms. To obtain eqU  and rU , we 
combine (3), (4), with the derivative of the sliding surface in (33), and include random terms 
in the adhesion force ar a rF F F= +  and the adhesion torque ar a rT T T= + , where rF  and rT  
are the random terms of the adhesion force and adhesion torque, respectively. Then, the 
derivative of the sliding surface can be written as  

 1 1 1
d a r r b d

r r r rB rs T T F T T e
rM J rM J M J J J

σ ω ρ
⎛ ⎞ ⎛ ⎞

= + + + + + − − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (35) 

To determine the equivalent control term eqU , uncertainties such as random terms in the 
adhesion force and adhesion torque rF  and rT , as well as the disturbance torque dT  in (35) 
are neglected, and it is assumed that the sliding surface s  is at steady state, that is, s  = 0, 
then the equivalent control law can be determined as  

 1
eq d a

J r rBU T e
r rM J J

σ ω ρ
⎡ ⎤⎛ ⎞

= + + − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (36) 

Thus, s  can be rewritten as  

 1 1
r r d r

r r rs T F T U
rM J M J J

⎛ ⎞
= + + − −⎜ ⎟

⎝ ⎠
 (37) 
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In the standard sliding mode control, to satisfy the reachability condition that directs system 
trajectories toward a sliding surface where they remain, the derivative of the sliding surface 
is selected as 

 sgn( )s K s= −  (38) 

In this case, chattering occurs in the control input. To attenuate chattering in the control 
input, the derivative of the sliding surface is selected as (Gao, 1993) 

 sgn( )s Ds K s= − −  (39) 

where the parameters D  and K  are positive.  
To determine a control term rU  that achieves robustness to uncertainties such as random 
terms in the adhesion force and adhesion torque, as well as the disturbance torque, it is 
assumed that 

 0 0
1 1

r r d
r rD s K T F T

rM J M J
η

⎛ ⎞
+ > + + − +⎜ ⎟

⎝ ⎠
 (40) 

where the parameters 0
rD D
J

= , 0
rK K
J

= , and η  are positive. Then, the robust control law 

can be determined as  

 sgn( )rU Ds K s= +  (41) 

and using (40), the reachability condition is satisfied as 

 

0 0

0 0

1 1 sgn( )

1 1

.

r r d

r r d

r rss s T F T D s K s
rM J M J

r rs T F T D s K
rM J M J

sη

⎡ ⎤⎛ ⎞
= + + − − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

≤ + + − − −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

< −

 (42) 

Finally, the sliding mode control law is selected as  

 1 sgn( ),

b eq r

d a

T U U

J r rBT e Ds K s
r rM J J

σ ω ρ

= +

⎡ ⎤⎛ ⎞
= + + − + + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

 (43) 

where the reference slip acceleration dσ  and the adhesion torque aT  cannot be measured 
during operation. Therefore, to implement the control system, the reference slip acceleration 

d dvσ λ=  must be estimated by ˆ
dvλ , where v̂  is the estimated acceleration of the rolling 

stocks, which can be obtained by the measured velocity of the rolling stocks through the 
first-order filter ( )

1f
sG s

sτ
=

+
. In addition, the adhesion torque a aT rF=  must be replaced 

by the calculated value given by (20) and (22) with the measured relative velocityσ . 
If the mass of the rolling stocks M  and the viscous friction torque coefficient B  are 
considered as parameters with variation, that is, n pM M M= +  and n pB B B= + , where the 
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subscripts n  and p  denote the nominal and perturbation values, respectively, then the 
uncertainty ψ  in the mass of the rolling stocks and the viscous friction torque coefficient is 
defined as  

 1 p T
m

p

rB
T

rM J
ψ ω θ φ= − =  (44) 

where 1 pT

p

rB
rM J

θ
⎡ ⎤

= −⎢ ⎥
⎢ ⎥⎣ ⎦

 and mT
φ

ω
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. The parameter vector θ  is considered as an 

unknown parameter vector, which can be estimated by using the update law. From (43) and 
the estimated unknown parameter vector θ̂ , the estimated sliding model control law can be 
selected as 

 1ˆ ˆ sgn( )Tn
b d m

n

rBJ rT T e Ds K s
r rM J J

σ ω θ φ ρ
⎡ ⎤⎛ ⎞

= + + − + + + +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (45) 

In order to obtain the update law for the unknown parameters, we consider the Lyapunov 
candidate  

 21 1
2 2

TV s
k

θ θ= +  (46) 

where ˆθ θ θ= − , θ  and θ̂  are the nominal and estimated parameter vectors, respectively, 
and k  is a positive parameter. The derivative of the Lyapunov candidate including sliding 
dynamics is expressed as  

 1 1ˆ ˆT Tn
d m b

n

rBr rV s T T e
rM J J J k

σ ω θ φ ρ θ θ
⎡ ⎤⎛ ⎞

= + + − − + + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (47) 

Substituting the estimated brake torque ˆ
bT  given by (45) into (47) yields   

 2 1 ˆsgn( ) TV Ds Ks s s
k

θ φ θ⎛ ⎞= − − + −⎜ ⎟
⎝ ⎠

 (48) 

By using the update law for the unknown parameters given by  

 ˆ ksθ φ=  (49) 

the derivative of the Lyapunov candidate (48) is nonpositive. The invariant set theorem then 
guarantees asymptotic stability of the wheel-slip brake control system (Khalil, 1996).  

7. Performance evaluation of the desired wheel-slip control system 
The characteristics of the wheel-slip control system shown in Fig. 16 are evaluated by 
simulation. The performance and robustness of the wheel-slip control system using the 
ASMC scheme are evaluated for railway rolling stocks, while considering system 
uncertainties such as parameter variation, railway conditions, disturbances, and unmodeled 
dynamics. 



Adaptive Sliding Mode Control of Adhesion Force in Railway Rolling Stocks   

 

403 

For simulation, the bristle model is used for the adhesion force model because the bristle 
model is relatively close to the actual adhesion force compared with the beam model. In 
addition, it is assumed that the brake torque is applied when the velocity of the rolling 
stocks is 100 km/h. From the experimental results in Fig. 13, it is assumed that the random 
adhesion force Fr is a white noise signal with a Gaussian distribution that has a standard 
deviation of 0.431 kN. Since the actual brake force is applied to the wheel disk by the brake 
caliper, the vibration occurs on the brake caliper at the initial braking moment. Therefore, 
the disturbance torque 40.05 sin 10t

d bT T e tπ−= , caused by the vibration of the brake caliper, 
is considered in the simulation. In addition, the traveling resistance force 20.63rF v=  of the 
rolling stocks and the viscous friction 0.010.25 tB −=  is considered, which causes overheating 
between the wheel disk and the brake pad. Finally, the unmodeled dynamics 

( )
0.15

0.6 1

s

a
eG s

s

−

=
+

 of the pneumatic actuator of the brake control system are considered. 
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Fig. 16. Wheel-slip control system. 
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Fig. 17. Relationship between the adhesion force coefficient and the slip ratio according to 
the change in rail conditions from dry to wet based on the beam and bristle models. 
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To assess the braking performance in the presence of parameter variations, the simulation is 
carried out under the assumption that the mass of the rolling stocks changes according to 
the number of passengers and that the rolling stocks travel in dry or wet rail conditions. It is 
assumed that the mass of the rolling stocks changes from 3517 to 5276 kg at 25 s. It is also 
assumed that the maximum adhesion force under wet rail conditions is approximately half 
of the maximum adhesion force under dry rail conditions and that the rail conditions 
change from dry to wet at 25 s. Figure 17 shows the relationship between the adhesion force 
coefficient and the slip ratio according to the change in rail conditions from dry to wet based 
on the beam and bristle models, which are considered in the simulation. As shown in  
Fig. 17, the reference slip ratio is assumed to be 0.119 and 0.059 under dry and wet rail 
conditions, respectively, for the beam model, and 0.132 and 0.092 under dry and wet rail 
conditions, respectively, for the bristle model. 
In order to verify the performance and robustness of the ASMC system, the desired wheel-
slip control system using the ASMC scheme is compared with a PI control system through 
simulation. Control gains of the PI and ASMC systems are selected by trial and error by 
considering various constraints for each case, such as the maximum brake torque and the 
maximum slip ratio allowed until the desired performance and robustness are obtained, 
which are summarized in Table 4. In controller design, the bristle model and beam model 
are considered for the adhesion force model. 
 

Control 
scheme Control gain Beam model Bristle model 

pK  400 N-h 650 N-h PI 
iK  54 N 27 N 

D  1.62 h-1 1.53 h-1 
K  70 km/h2 70 km/h2 
ρ  1.65 h-1 1.54 h-1 ASMC 

k  82.1 10−×  82.1 10−×  

Table 4. Control gains of the PI and ASMC systems. 
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Fig. 18. Velocities of the wheel and rolling stocks for the PI control systems based on the 
beam and bristle models. 
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Fig. 19. Velocities of the wheel and rolling stocks for the adaptive sliding mode control 
(ASMC) systems based on the beam and bristle models. 
Figures 18 and 19 show the velocities of the wheel and rolling stocks for the PI and ASMC 
systems based on the beam and bristle models, respectively. As shown in Fig. 18, the 
braking distance and time of the PI control system until the velocity of the rolling stocks 
reaches 5 km/h are 700 m and 59.5 s, respectively, for the PI control based on the beam 
model, and 682 m and 58.9 s, respectively, for the PI control based on the bristle model. By 
using the PI control based on the bristle model in place of the PI control based on the beam 
model, the braking distance and time are improved by 2.6% and 1%, respectively. However, 
the PI control system cannot effectively compensate for system uncertainties such as the 
mass of the rolling stocks, railway conditions, the traveling resistance force, and variations 
of the viscous friction coefficient. 
As shown in Fig. 19 for the ASMC system, the braking distance and time are 607 m and 55.3 
s, respectively, for the ASMC based on the beam model and 581 m and 50.7 s, respectively, 
for the ASMC based on the bristle model. Figure 19 shows that the ASMC system provides 
robust velocity regulation of the rolling stocks in the presence of variations in the mass of 
the rolling stocks and rail conditions. In this case, the braking distance and time are 
improved by 4.3% and 8.3%, respectively, by using the ASMC based on the bristle model in 
place of the ASMC based on the beam model. 
Figure 20 shows the brake torques for the PI and ASMC systems based on the beam and 
bristle models. The expended braking energies of the PI and ASMC systems during braking 
time are 71.77 10×  N-m and 71.71 10×  N-m, respectively. Therefore, by using the adaptive 
sliding mode control system, it is possible to effectively reduce the braking time and 
distance using a relatively small braking energy consumption. 
The operation of the PI and ASMC wheel-slip control systems can also be demonstrated 
through the slip ratios. Figure 21 shows the slip ratios of the PI and ASMC systems based on 
the beam and bristle models. Figure 21 shows that the PI control system has a large tracking 
error of slip ratio compared with the ASMC system. However, the wheel-slip control system 
using the ASMC scheme can maintain the slip ratio near the reference slip ratio during the 
braking time although the slip ratios fluctuate slightly after 25s when the system 
uncertainties are applied. Therefore, it is appropriate to use the adaptive sliding mode 
control system to obtain the maximum adhesion force and a short braking distance. Using 
the ASMC based on the bristle model in place of the PI control based on the beam model 
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yields 28% improvement in the wheel slip. Table 5 summarizes the performance of the PI 
and ASMC systems based on the beam and bristle models. 
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Fig. 20. Brake torques for the PI and ASMC systems based on the beam and bristle models. 
 

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
                Reference slip ratio
PI         :  (Bristle)  (Beam)
ASMC :  (Bristle)  (Beam) 

 

Sl
ip

 ra
tio

 λ

Time (sec)  
Fig. 21. Slip ratios of the PI and ASMC systems based on the beam and bristle models. 
 

PI ASMC Performance 
Beam model Bristle Model Beam model Bristle model 

Braking distance (m) 700 682 607 581 
Braking time (s) 59.5 58.9 55.3 50.7 

Expended braking energy(kN-m) 1.77×107 1.77×107 1.77×107 1.77×107 
Mean value of the absolute 
error between λ  and dλ  0.0378 0.0351 0.0354 0.0272 

Table 5. The performances of the PI and ASMC systems based on the beam and bristle 
models. 
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8. Conclusions 
Two kinds of models, namely, the beam and bristle models, for the adhesion force in 
railway rolling stocks are developed. The validity of the beam and bristle models is obtained 
through an adhesion test using a brake performance test rig. By comparing the simulation 
results of the two kinds of adhesion force models with the experimental results, it is found 
that the two kinds of adhesion force models can effectively represent the experimental 
results. However, the adhesion force model based on the beam model cannot represent the 
dynamic characteristics of friction, while the bristle model can mathematically include the 
dynamics on friction and can precisely consider the effect of the initial braking velocity in 
the adhesion regime. Therefore, the bristle model is more appropriate than the beam model 
for the design of the wheel-slip controller. 
In addition, based on the beam and bristle models, the PI and ASMC systems are designed to 
control wheel slip in railway rolling stocks. Through simulation, we evaluate the performance 
and robustness of the PI and ASMC systems based on the beam and bristle models for railway 
rolling stocks. It is verified from the simulation study that, among the four types investigated 
according to control schemes and adhesion force models, the adaptive sliding mode control 
system based on the bristle model is the most suitable system for the wheel slip in the rolling 
stocks with system uncertainties such as the mass and traveling resistance force of the rolling 
stocks, rail conditions, random adhesion torque, disturbance torque due to the vibration of the 
brake caliper, and unmodeled actuator dynamics.  
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1. Introduction 
The development of biochips is a major thrust of the rapidly growing biotechnology 
industry. Research on biomedical or biochemical analysis miniaturization and integration 
has made explosive progress by using biochips recently. For example, capillary 
electrophoresis (CE), sample preconcentration, genomic DNA extraction, and DNA 
hybridization have been successfully miniaturized and operated in a single-step chip. 
However, there is still a considerable technical challenge in integrating these procedures 
into a multiple-step system. In biometric and biomedical applications, the special 
transporting mechanism must be designed for the μTAS (micro total analysis system) to 
move samples and reagents through the microchannels that connect the unit procedure 
components in the system. Therefore, an important issue for this miniaturization and 
integration is microfluid management technique, i.e., microfluid transportation, metering, 
and mixing. This charter introduced a method to achieve the microfluidic manipulated 
implementation on biochip system with a pneumatic pumping actuator and a feedback-
signal flowmeter by using an optimal fuzzy sliding-mode control (OFSMC) design based on 
the 8051 microprocessor.  
However, the relationships of the pumping mechanisms, the operating conditions of the 
devices, and the transporting behavior of the multi-component fluids in these channels are 
quite complicated. Because the main disadvantages of the mechanical valves utilized 
moving parts are the complexity and expense of fabrication, and the fragility of the 
components. Therefore, a novel recursively-structured apparatus of valveless microfluid 
manipulating method based on a pneumatic pumping mechanism has been utilized in this 
study. The working principle of this pumping design on this device should not directly 
relate to the nature of the fluid components. The driving force acting on the microliquid 
drop in the microchannel of this device is based on the pneumatic pumping which is 
induced by a blowing airflow. Furthermore, the pneumatic pumping actuator should be 
independent of the actuation responsible for the biochemical analysis on the chip system, so 
the contamination of pneumatic pumping source can be avoided. The total biochip 
mechanism consists of an external pneumatic actuator and an on-chip planar structure for 
airflow reception. 
In order to achieve microfluidic manipulation in the microchannel of the biochip system, 
pneumatic pumping controller plays an important role. Therefore, a design of the controller 
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has been investigated numerically and experimentally in the present charter. In the control 
structure of biochip system, at first, the mathematical model of the biochip mechanism is 
identified by ARX model. Second, according to the results of the biochip-mechanism 
identification, the control-algorithm design is developed. By the simulation results of the 
biochip system with a feedback-signals flowmeter, they show the effectiveness of the 
developed control algorithm. Third, architecture of the control algorithm is integrated on a 
microprocessor to implement microfluidic manipulation. Since the mathematical model of 
the flow control mechanism in the biochip microchannels is a complicated nonlinear plant, 
the fuzzy logic control (FLC) design of the controller will be utilized. Design of the FLC 
based on the fuzzy set theory has been widely applied to consumer products or industrial 
process controls. In particular, they are very effective techniques for complicated, nonlinear, 
and imprecise plants for which either no mathematical model exists or the mathematical 
model is severely nonlinear. The FLC can approximate the human expert’s control behaviors 
to work fine in such ill-defined environments. For some applications, the FLC can be 
divided into two classes 1) the general-purpose fuzzy processor with specialized fuzzy 
computations and 2) the dedicated fuzzy hardware for specific applications. Because the 
general-purpose fuzzy processor can be implemented quickly and applied flexibly, and 
dedicated fuzzy hardware requires long time for development, the general-purpose fuzzy 
processor-8051 microcontroller can be used. Nevertheless, there are also systemic 
uncertainties and disturbance in FLC controller. Because sliding-mode control (SMC) had 
been known as an effective approach to restrain the systemic uncertainties and disturbance, 
SMC algorithm was utilized. In order to achieve a robust control system, the microcontroller 
of the biochip system combining FLC and SMC algorithms optimally has been developed. 
Therefore, an OFSMC based on an 8051 microcontroller has been investigated numerically 
and experimentally in this charter. Hence, microfluidic manipulation in the microchannel of 
the biochip system based on OFSMC has been implemented by using an 8051 
microcontroller. 
The microfluidic manipulation based on the microcontroller has successfully been utilized 
to improve the reaction efficiency of molecular biology. First, it was used in DNA 
hybridization. There are two methods to improve the efficiency of the nucleic acid 
hybridization in this charter. The first method is to increase the velocity of the target nucleic 
acid molecules, which increases the effective collision into the probe molecules as the target 
molecules flow back and forth. The second method is to introduce the strain rates of the 
target mixture flow on the hybridization surface. This hybridization chip was able to 
increase hybridization signal 6-fold, reduce non-specific target-probe binding and 
background noises within 30 minutes, as compared to conventional hybridization methods, 
which may take from 4 hours to overnight. Second, it was used in DNA extraction. When 
serum existed in the fluid, the extraction efficiency of immobilized beads with solution 
flowing back and forth was 88-fold higher than that of free-beads. Third, it could be 
integrated in lab-on-a-chip. For the Tee-connected channels, it demonstrated the ability of 
manipulating the liquid drop from a first channel to a second channel, while simultaneously 
preventing flow into the third channel. Because there is a continuous airflow at the “outlet” 
during fluid manipulation, it can avoid contamination of the air source similar to the 
“laminar flow hook” in biological experiments. 
The charter is organized as follows. In Section 2, we introduce the structure of the biochip 
control system. In Section 3, the fundamental knowledge of OFSMC and the model of the 
biochip system are introduced, and we address the OFSMC scheme and the associated 
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simulations. In Section 4, the OFSMC IC based on 8051 microprocessor is designed, and the 
results of the real-time experiment are presented. In Section 5, the efficiency improvement 
for the molecular biology reaction and DNA extraction by using OFSMC method are 
presented. Finally, the conclusion is given in Section 6. 

2. Structure of the biochip control system 
The structure of the biochip control system (Fig. 1) contains six parts: an air compressor, two 
flow controllers and two flowmeters, a flow-control chip, a biochip, photodiodes system, 
and a control-chip circuit system. One had designed a pneumatic device with planar 
structures for microfluidic manipulation (Chung, Jen, Lin, Wu & Wu, 2003). Pneumatic 
devices without any microfabricated electrodes or heaters, which will have a minimal effect 
on the biochemical properties of the microfluid by not generating electrical current or heat, 
are most suitable for µTAS. A pneumatic structure possessing the ability of bi-directional 
pumping should be utilized in order to implement a pneumatic device which can control the 
movement of microfluid without valves or moving parts. 
 

8051
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ADC
DAC

CONTROL CIRCUIT

flowmeterFlow controller Flow Control Chip

Biochip

Feedback-Signal 

Process of Photodiode 

System 

IR
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PD2

Air Compressor
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Fig. 1. Structure of the biochip control system. 
The schematic diagram of the single pneumatic structure, which provides suction and 
exclusion by two inlets, is depicted in Fig. 2. When the air flows through inlet A only, it 
causes a low-pressure zone behind the triangular block and suction occurs in the vertical 
microchannel. Furthermore, when the air flows through inlet B only, the airflow is induced 
into the vertical microchannel to generate exclusion. The numerical and experimental results 
of the pressure and the stream tracers for the condition of the flow-control chip have been 
demonstrated (Marquardt, 1963). According to the principle of the flow-control chip, the 
microfluidic manipulation on the biochip is presented in this study by using OFSMC rules 



 Sliding Mode Control 

 

412 

with two flow controllers and two flowmeters. Since the biochip in the biochip system is a 
consumer, the photodiodes system should be utilized for sensing the feedback signals of the 
position of the reagent in the microchannel of the biochip. Hence, DNA extraction can be 
achieved in this study. 
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Fig. 2. Single pneumatic structure. 

3. Design of the biochip control system 
3.1 Design of optimal fuzzy sliding mode control 
The biochip system of this design is shown in Fig. 1. If the biochip is DNA extraction chip, 
the extraction beads are immobilized on the channels. When the bio-fluidics does not flow 
the place without beads, the time of not extracting DNA can be reduced, and the extraction 
efficiency will also be improved. So the control of bio-fluidics’ location is critical to DNA 
extraction (or hybridization) efficiency. 
The biochip system depicted in Fig. 1 is a nonlinear system. Since the mathematical model of 
the flow-control mechanism and the microchannels in the biochip is a complicated nonlinear 
model, FLC design of the controller was utilized. The basic idea behind FLC is to 
incorporate the expert experience of a human operator in the design of the controller in 
controlling a process whose input-output relationship is described by a collection of fuzzy 
control rules (Altrock, Krause & Zimmermann, 1992). The heart of the fuzzy control rules is 
a knowledge base consisting of the so-called fuzzy IF-THEN rules involving linguistic 
variables rather than a complicated dynamic model. The typical architecture of a FLC, 
shown in Fig. 3, is comprised of four principal components: a fuzzification interface, a 
knowledge base, an inference engine, and defuzzification interface. The fuzzification 
interface has the effect of transforming crisp measured data into suitable linguistic values; it 
was designed first so that further fuzzy inferences could be performed according to the 
fuzzy rules (Polkinghorne, Roberts, Burns & Winwood, 1994). The heart of the fuzzification 
interface is the design of membership function. There are many kinds of membership 
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functions - Gaussian, trapezoid, triangular and so on - of the fuzzy set. In this paper, a 
triangular membership function was utilized, as shown in Figs. 4-5.  
 

 
 

Fig. 3. Architecture of a fuzzy logic controller. 
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Fig. 4. Membership function-input variable (d) of photodiode detector. 
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Fig. 5. Membership function-output variable (z) of photodiode detector.  

The overall fuzzy rules for the biochip system are defined as the following: 

IF d is NB then jz  is MPB 

IF d is NM then jz  is MPM 

IF d is NS then jz  is MPS 

IF d is ZE then jz  is M 

IF d is PS then jz  is MNS 

IF d is PM then jz  is MNM 

IF d is PB then jz  is MNB 

where d is input variable of the photodiode signal, and z is output variable of the 
photodiode signal. 
The inference engine is based on the compositional rule of inference with knowledge base 
for approximate reasoning suggested by Zadeh (Zadeh, 1965; Zadeh, 1968). An inference 
engine is the kernel of the FLC in modeling human decision making within the conceptual 
framework of fuzzy logic and reasoning. Hence, the fuzzification interface and fuzzy rules 
are designed completely before fuzzy reasoning. In this paper, since there are many 
structures of inference engine, fuzzy reasoning-Mamdani’s minimum fuzzy implication rule 
(MMFIR) method (Mamdani, 1977; Lee, 1990; Altrock, Krause & Zimmermann, 1992; Lin 
and Lee, 1999) was utilized. For simplicity, assume two fuzzy rules as follows: 
R1: IF x is A1 and y is B1, then z is C1, 
R2: IF x is A2 and y is B2, then z is C2. 
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Then the firing strengths 1α  and 2α  of the first and second rules may be expressed as 

1 11 0 0( ) ( )A Bx yα μ μ= ∧  and 
2 22 0 0( ) ( )A Bx yα μ μ= ∧ , 

where 
1 0( )A xμ  and 

1 0( )B yμ  indicate the degrees of partial match between the user-supplied 
data and the data in the fuzzy rule base. 
In MMFIR fuzzy resoning, the ith fuzzy control rule leads to the control decision 

' ( ) ( )
ii

i CC w wμ α μ= ∧ . 

The final inferred consequent C is given by 

' ' 1 21 2
1 2( ) [ ( )] [ ( )]C C CC Cw w wμ μ μ α μ α μ= ∨ = ∧ ∨ ∧ . 

The fuzzy reasoning process is illustrated in Fig. 6. 
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Fig. 6. Fuzzy reasoning of MMFIR method.  

Defuzzification is a mapping from a space of fuzzy control actions defined over an output 
universe of discourse into a space of crisp control actions. This process is necessary because 
fuzzy control actions cannot be utilized in controlling the plant for practical applications. 
Hence, the widely used center of area (COA) method, which generates the center of gravity 
of the possibility distribution of a control action, was utilized. In the case of a discrete 
universe, this method yields 

 1

1

( )

( )

n
C j jj

COA n
C jj

z z
z

z

μ

μ
=

=

=
∑
∑

 (1) 

where n is the number of quantization levels of the output, jz  is the amount of control 
output at the quantization level j, and ( )C jzμ  represents its membership degree in the 
output fuzzy set C. 
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The biochip system depicted in Fig. 1 is a nonlinear system that has been used as an 
application to study real world nonlinear control problems by different control techniques 
(Cheng & Li, 1998; Li & Shieh, 2000). The model of the biochip system is identified by ARX 
model, as 

 
( 1) ( ) ( )
( ) ( )

z z

z

X k A X k B u k
y k C X k

+ = +⎧
⎨ =⎩

 (2) 

where ( ) nX k R∈  is the state variables of system, ( ) mu k R∈  is the input voltage of the flow 
controller and ( ) ry k R∈  is the assumed model output related to the position of the reagent 
in the microchannel of the biochip. The system is controllable and observable.  
Sliding mode control’s robust and disturbance-insensitive characteristics enable the SMC 
controller to perform well in systems with model uncertainty, disturbances and noises. In 
this paper, in addition to FLC controller, SMC controller was utilized to design the control 
input voltage of the flow controller. To design SMC controllers, a sliding function was 
designed first, and then enforced a system trajectory to enter sliding surface in a finite time. 
As soon as the system trajectory entered the sliding surface, they moved the sliding surface 
to a control goal. To sum up, there are two procedures of sliding mode, as shown in Fig. 7. 
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Fig. 7. Generation of sliding mode.  

The proposed SMC controller was based on pole placement (Chang, 1999), since the sliding 
function could be designed by pole placement. Some conditions were set for the sliding 
vector design in the proposed sliding mode control: 
1. { }Re 0iλ < , j Rα ∈ , 0jα < , j iα λ≠ . 
2. Any eigenvalue in { }1 ,..., mα α  is not in the spectrum of zA . 
3. The number of any repeated eigenvalues in { }1 1,..., , ,...,n m mλ λ α α−  is not greater than m, 

the rank of zB . 
where { }1 2, ,..., n mλ λ λ −  are sliding-mode eigenvalues and { }1 2, ,..., mα α α  are virtual 
eigenvalues. 
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As proved by Sinswat and Fallside (Sinswat & Fallside, 1977), if the condition (3) in the 
above is established, the control system matrix z zA B K−  can be diagonalized as 

 
1 0

0
V

z z
F

V V
A B K

F F

− Φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Γ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3) 

where [ ]1 2, ,...,V n mdiag λ λ λ −Φ = , [ ]1 2, ,...,F mdiag α α αΓ = , and V and F are left eigenvectors 
with respect to VΦ  and FΓ , respectively. Hence, Eq. (3) can be rewritten as 

 
( )
( )

z z V

z z F

V A B K V
F A B K F

− = Φ⎧
⎨ − = Γ⎩

 (4) 

Rearrangement of Eq. (4) yields 

 ( )z F zFA F FB K− Γ =  (5) 

According to Chang (Chang, 1999), 

 ( ) ( )z Frank FA F rank F− Γ =  (6) 

Since F contains m independent left eigenvectors, one has ( )rank F m= . From Eqs. (5) and 
(6), it is also true that ( )z Frank FA F− Γ = (( ) )zrank Fb K = ( )rank F m= . In other words, zFB  is 
invertible. With the designed left eigenvector F above, the sliding function ( )S k  is designed 
as 

 ( ) ( )S k FX k=  (7) 

The second step is the discrete-time switching control design. A different and much more 
expedient approach than that of Gao et al. (Gao, Wang & Homaifa, 1995) is adopted here. 
This approach is called the reaching law approach that has been proposed for continuous 
variable structure control (VSC) systems (Gao, 1990; Hung, Gao & Hung, 1993; Gao & Hung, 
1993). This control law is synthesized from the reaching law in conjunction with a plant 
model and the known bounds of perturbations. For a discrete-time system, the reaching law 
is (Gao, Wang & Homaifa, 1995) 

 ( 1) ( ) ( ) sgn( ( ))S k S k qTS k T S kε+ − = − −  (8) 

where 0T >  is the sampling period, 0q > , 0ε >  and 1 0qT− > . Therefore, the switching 
control law for the discrete-time system is derived based on this reaching law. From Eq. (7) 
and pole-placement method, ( )S k  and ( 1)S k +  can be obtained in terms of sliding vector F 
as, 

 
( ) ( )
( 1) ( 1) ( ) ( ) ( )z z z

S k FX k
S k FX k F A B K X k FB u k

=⎧
⎨ + = + = − +⎩

 (9) 

where nK R∈  is a gain matrix obtained by assigning n desired eigenvalues 
{ }1 1,..., , ,...,n m mλ λ α α−  of A BK− . 
It follows that 
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 ( 1) ( ) ( ) ( ) ( ) ( )z z zS k S k F A B K X k FB u k FX k+ − = − + −  (10) 

From Eqs. (8) and (10), 

( 1) ( ) ( ) sgn( ( ))S k S k qTS k T S kε+ − = − − ( ) ( ) ( ) ( )z z zF A B K X k FB u k FX k= − + −  

Solving for ( )u k  obtains the switching control law 

 1( ) ( ) [ ( ) ( ) ( 1) ( ) sgn( ( ))]z z zu k FB F A B K X k qT FX k T FX kε−= − − + − +  (11) 

In order to achieve the output tracking control, a reference command input ( )r k  is 
introduced into the system by modifying the state feedback control law ( ) ( )pu k KX k= −  with 
pole-placement design method (Franklin, Powell & Workman, 1998) to become 

 ( ) ( ) ( ( ) ( ))p u xu k N r k K X k N r k= − −  (12) 

where 

 
1 0

0
u z z

x z

N A I B
N C I

−−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (13) 

The proposed SMC input, based on Eq. (13), is assumed to be 

 ( ) ( ) ( ) ( ( ) ( ))s p u xu k u k u N r k K X k N r k u= + = − − +  (14) 

Substituting Eq. (11) into (14) gives the proposed SMC input as 

 1

( ) ( ) ( ( ) ( ))

( ) [ ( ) ( ) ( 1) ( ) sgn( ( ))]
s u x

z z z

u k N r k K X k N r k

FB F A B K X k qT FX k T FX kε−

= − −

− − + − +
 (15) 

The pole-placement SMC design method utilizes the feedback of all the state variables to 
form the desired sliding vector. In practice, not all the state variables are available for direct 
measurement. Hence, it is necessary to estimate the state variables that are not directly 
measurable.  
In practice, a discrete linear time-invariant system sometimes has system disturbances and 
measurement noise. Hence, linear quadratic estimator (LQE) will be applied here to estimate 
optimal states in having system disturbances and measurement noise. 
According to Eq. (2), consider a system model as 

 
( 1) ( ) ( ) ( )
( ) ( ) ( )

z z

z

X k A X k B u k G k
y k C X k k

ν
ω

+ = + +⎧
⎨ = +⎩

 (16) 

where ( ) nX k R∈  is the state variable, ( ) mu k R∈  is the control input voltage , '( ) ry k R∈  is 
the assumed plant output related to the XY stage position, and ( ) nk Rν ∈  and ( ) rk Rω ∈  are 
system disturbances and measurement noise with covariances [ ]TE Qωω = , [ ]TE Rνν =  and 

[ ] 0TE ων = .  
The objective of LQE is to find a vector ˆ ( )X k  which is an optimal estimation of the present 
state ( )X k . Here “optimal” means the cost function 
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 { }0
lim ( )

T T T
T

J E X QX u Ru dt
→∞

= +∫  (17) 

is minimized. The solution is the estimator as 

 

^ ^ ^

^ ^

( 1) ( ) ( ) ( ( ) ( ))

( ) ( )

z z f z

z

X k A X k B u k K y k C X k

y k C X k

⎧
+ = + + −⎪

⎨
⎪ =⎩

 (18) 

 

where fK  is the “optimal Kalman” gain 1T
f zK PC R−=  and P  is the solution of the algebraic 

Riccati equation 

 1 0T T
z z z zA P PA PC R C P Q−+ − + =  (19) 

 

FLC, SMC, and LQE were combined into the so called optimal fuzzy sliding-mode control 
(OFSMC) and utilized to control input voltage of the flow controller. The OFSMC block 
diagram with LQE is shown in Fig. 8. 
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Fig. 8. OFSMC block diagram.  

In the biochip system, the photodiode system provided the position feedback signal for FLC 
and LQE. Then, the FLC could use the position feedback signals to generate the input 
signals for SMC. And the LQE could estimate optimal states in having system disturbances 
and measurement noise for SMC by the position feedback signals. Hence, the SMC with FLC 
and LQE could implement the microfuildic manipulation very well and robustly. The 
performance of the OFSMC would be explained in detail by simulation and experimental 
results, which are presented in Section 3.2. 
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3.2 Simulation of OFSMC 
This section deals with a system model described by Eq. (2) and defines a reference 
command input ( )r k , which is an input voltage of the flow controller by fuzzy controller 
with designed photodiode signals. The pole-placement algorithm described in Section 3.1 is 
utilized to determine a sliding vector. In this study, Ackermann’s Formula is used to 
determine the pole-placement feedback gain matrix K . In practice, the fact that not all state 
variables are available for direct measurement results in the necessity to estimate the state 
variables that are not directly measurable. Hence, the full-order state observer designed by 
Ackermann’s Formula and LQE will be utilized in this study.  
In order to achieve the biochip application, the microfluidic reagent has to be manipulated 
to flow back and forth in the central zone of the microchannel between the PD1 and PD2, 
shown in Fig. 1. During the simulations, the external disturbance would be added in system 
plant. Figs. 9 and 10 show the simulations of the biochip system model at 2 Hz of back and 
forth flowing based on FLC, and fuzzy sliding mode control (FSMC), respectively, with the 
full-order estimator (FOE), and OFSMC by using the MATLAB and Simulink. In Figure 9, 
the blue solid lines represent reference command input whereas the red dotted lines, the 
green dash-dot lines and the magenta dashed line are the system output based on FLC, 
FSMC with FOE and OFSMC respectively. Every turn of the curve represents a reversal of 
the flowing reagent during its back and forth flow in the microchannel on the biochip. Fig. 
10 is the error performance of the simulation results of biochip system model based on the 
three controllers. 
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Fig. 9. Simulation results of biochip system model based on FLC, FSMC with the FOE and 
OFSMC at 2 Hz. The blue solid lines represent reference command input whereas the red 
dotted lines, the green dash-dot lines and the magenta dashed line are the system output 
based on FLC, FSMC with FOE and OFSMC respectively. 
Increasing emphasis on the mathematical formulation and measurement of control system 
performance can be found in recent literature on modern control. Therefore, as an always-
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positive number or zero, the performance index that can be calculated or measured and 
used to evaluate the system’s performance is usually utilized. The best system is defined as 
the system that minimizes this index. In this study, integrated absolute error (IAE) that is 
often of practical significance is used as the performance index and is expressed as 

 
0

( )
T

IAE e t dt= ∫  (20) 

where ( )e t  is a error function of the plant and T  is a finite time. In addition to IAE, integral 
of time multiplied by absolute error (ITAE) that provides the performance index of the best 
sensitivity is expressed as 

 
0

( )
T

ITAE t e t dt= ∫  (21) 

where ( )e t  is a error function of the plant and T  is a finite time. Using the above two 
methods, the performance of the system will be evaluated exactly.  
In molecular biology applications, increasing the velocity of the target nucleic acid 
molecules increases the number of effective collision into the probe molecules as the target 
molecules flow back and forth, which will ultimately increase the efficiency of biochemical 
reaction obviously. Therefore, according to the issue, the performance of the simulation 
results with the three control rules as the target molecules flowing back and forth at 0.2, 0.5, 
1 and 2 Hz would be presented in Table 1. 
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Fig. 10. Error performance of simulation results of biochip system model based on FLC, 
FSMC with the FOE and OFSMC at 2 Hz. The red dotted lines, the green dash-dot lines and 
the magenta dashed line are the system output based on FLC, FSMC with FOE and OFSMC 
respectively. 
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The overshoot means the reagent is out of the central zone as it is manipulated. Here, out of 
the length of the central zone is defined as overshoot value. And the error performance of 
the simulation results were also evaluated by using IAE and ITAE indices and the results 
are shown in Tables 2 and 3. The following conclusions can be arrived at from the analysis 
of the simulation results from Figs. 9 and 10, and Tables 1 to 3.  
 

Overshot
(mm)

Frequency 
(Hz) 

FLC FSMC OFSMC

0.2 8.0 1.1 0.5 

0.5 10.0 1.3 0.7 

1 11.5 1.7 0.9 

2 12.0 1.8 1.1 

Table 1. Performances of the simulation results with FLC, FSMC, and OFSMC control rules 
 

 
IAE

Frequency 
(Hz) 

FLC FSMC OFSMC

0.2 3061 1106 73 

0.5 2888 1084 100 

1 2889 1279 162 

2 2892 1824 301 

Table 2. IAE index of the control systems with FLC, FSMC, and OFSMC control rules  
 

 
ITAE

Frequency 
(Hz) 

FLC FSMC OFSMC

0.2 5438 2063 118 

0.5 5514 2023 170 

1 5712 2473 303 

2 5814 3529 570 
 

Table 3. ITAE index of the control systems with FLC, FSMC, and OFSMC control rules  



A Biomedical Application by Using Optimal Fuzzy Sliding-Mode Control 

 

423 

1. According to Figs. 9, 10, and the values of IAE and ITAE (Table 1), the biochip system 
model based on OFSMC controller at 2 Hz performs better than that based on FLC, or 
FSMC controller with FOE. In addition, the performances of the biochip system model 
based on OFSMC controller at 0.2, 0.5, and 1 Hz are obviously better than the other two, 
according to Tables 1 to 3. Therefore, the OFSMC controller can perform well in the 
biochip system with disturbances. 

2. It is certain that the OFSMC control method is capable of manipulating the position of 
the reagent in the microchannel on the biochip robustly and successfully. The 
experimental results of microfluidic manipulation on biochip system with OFSMC 
controller based on 8051 microprocessor are shown in Section 4. 

4. Experimental results of OFSMC 
The control block diagram of the biochip system with OFSMC controller described in 
Section 2 and 3 is shown in Fig. 8. In order to provide a quick and useful product for non 
PC-based systems, the microfluidic manipulation is implemented by 8051 microprocessor 
in this study. And the A/D and D/A chips were utilized to convert the photodiode or 
flowmeter feedback analog signals into digital signals for the microprocessor as well as to 
convert digital signals into analog signals for the flow controller. Then, the circuit of the 
photodiode-signal process should be designed. Assembly language was utilized to 
program the OFSMC control rules to embed into 8051 microprocessor with flow chart of 
the program shown in Fig. 11. The experimental results of microfluidic manipulation on 
biochip system with OFSMC controller based on 8051 microprocessor are shown in Fig. 
12, where the volume of reagent used is 94 μL. The reagent on the biochip system was 
controlled excellently to flow back and forth at 2 Hz, because the overshoot of the control 
performance was very small and the control system was very stable. The experimental 
results of the control performance with FLC, FSMC, and OFSMC control rules are shown 
in Fig. 13.  
According to Fig. 13, the microfluidic manipulation with FLC control rule can only be 
implemented to flow back and forth at 0.2 Hz, and the overshoot of the performance is -10, 
which means the reagent could not be manipulated between the PD1 and PD2. Either it was 
pushed out of the biochip, or it was manipulated under 1 cm length of the undershoot at 0.2 
Hz of back and forth flowing. In addition, according to the results of the performance with 
FSMC control rule, the overshoot became larger and larger by increasing the frequency of 
back and forth flowing. Compared to FLC and FSMC control rule, the overshoots of the 
performance with OFSMC control rule were the least of the three control rules and the 
performance was the most stable and the best of the three at all frequencies of back and 
forth flowing. The microfluidic manipulation on biochip system with OFSMC rules can keep 
flowing back and forth at 2 Hz within 1 h while the other two can not. 
Since the experimental and simulation results are in good agreement, it could be concluded 
that the control performance with OFSMC control rule was better than that with FLC and 
FSMC. Compared to FLC and FSMC, it was more successful to overcome the variable 
parameters and nonlinear model to achieve a better microfluid management with OFSMC 
control rule when using different biochip for every time. Therefore, it is certain that the 
OFSMC control method is capable of manipulating the position of the reagent in the 
microchannel on the biochip robustly and successfully. 
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Fig. 11. Flow chart of the program. 
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Fig. 12. Experimental results of microfluidic manipulation at 2 Hz (A period from (A) to 
(D)). 
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Fig. 13. Experimental results of microfluidic manipulation with FLC, FSMC, and OFSMC 
control rules. 

5. Biomedical application results 
According to the experimental results given in Section 4, the microfluidic manipulation 
based on the microcontroller could be utilized in biotechnology, as it successfully improved 
the efficiency of the biochemical reaction. First, it was used in DNA hybridization. There are 
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two methods to improve the efficiency of the nucleic acid hybridization in this charter. The 
first method is to increase the velocity of the target nucleic acid molecules, which increases 
the effective collision into the probe molecules as the target molecules flow back and forth. 
The second method is to introduce the strain rates of the target mixture flow on the 
hybridization surface. This hybridization chip was able to increase hybridization signal 6-
fold, reduce non-specific target-probe binding and background noises within 30 minutes, as 
compared to conventional hybridization methods, which may take from 4 hours to 
overnight. Second, it was used in DNA extraction. In this section, DNA extraction from 
Chung, Wen and Lin (Chung, Wen & Lin, 2007) is introduced.  
The microfluidic DNA extraction chip was designed and fabricated onto a poly-
methylmethacrylate (PMMA) substrate with flow channels. Machined and immobilized-
beads PMMA substrate and blank PMMA were bonded together to form the device. The 
beads used for DNA extraction was obtained from Magic Bead Inc. (USA) A plasma 
generator was used to perform the surface treatment. Plasma source gas consisting of a 
mixture of ammonia and oxygen was used to activate the surface of PMMA substrate. 
Escherichia coli (E. coli) was cultured in 5 ml of LB medium (NaCl: 10 g/l, Tryptone: 10 g/l, 
yeast extract: 5 g/l) in 15 ml tubes at 37°C and 225 rpm. After 16 h, the optical density (OD) 
of the culture was measured in a spectrophotometer (U-2100, Hitachi, Japan). The number of 
E. coli cells or the amount of DNA was calculated from an OD versus cell number. The 
culture was then diluted by distilled water to obtain varying numbers (102 -105) of E. coli 
cells per micro liter. DNA was extracted from the blood of one of the members of the group 
using the microchip. Whole blood was directly used without any pretreatment. 
The sample flowed forward and backward with the immobilized beads at a frequency of 1 
Hz inside the channel. E. coli cells were treated with a buffer (B1+B2, Magic Bead, USA) to 
lyse the cells and to release the DNA. The DNA extracted using the microchips was 
amplified by PCR (Polymerase Chain Reaction). The forward and reverse primers were 5’-
CAGGATTAGATACCCTGGTAG-3’ and 5’-TTCCCCTACGGTTACCTTGTT-3’, respectively. 
The PCR condition was: one cycle of 5 min at 95°C, 40 cycles of 30 s at 95°C, 40 s at 58°C and 
40 s at 72°C, and one cycle of 10 min at 72°C. The PCR products were analyzed qualitatively 
in a Mupid-2 electrophoresis equipment (Advance, Japan) and quantitatively in an Agilent 
2100 bioanalyzer (Agilent Technologies, USA). 
The extraction efficiencies of E. coli cell number in the whole blood were tested and are 
shown in Fig. 18a. It showed that the free beads could efficiently extract DNA as the number 
of E. coli cells was higher than 5×104, but could hardly extract DNA as the number was 
smaller than 104 in 25 μl of whole blood. And for the immobilized beads, the corresponding 
boundary number of E. coli cells for efficient and hard extractions of DNA were 2×102 and 
102, respectively. After the analysis in the bioanalyzer, the results were as shown in Fig. 18b. 
When the number of E. coli cells was 2×102 to 104 in 25 μl of whole blood, the extraction 
efficiency of immobilized beads with solution flowing back and forth was about 600-fold 
larger than that of free beads. 

6. Conclusions 
In biometric and biomedical applications, an important issue for miniaturization and 
integration is microfluid management. This charter introduced the optimal fuzzy sliding-
mode control (OFSMC) design based on the 8051 microprocessor and the complete 
microfluidic manipulated system implementation of biochip system with a pneumatic 
pumping actuator, two feedback-signal photodiodes and flowmeters for better microfluid 
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management. The newly developed microfluid management technique was successfully 
utilized to improve the reaction and extraction efficiency of a biochemical reaction. 
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1. Introduction  
In recent years much of the research in the area of control theory focused on the design of 
discontinuous feedback which switches the structure of the system according to the 
evolution of its state vector. This control idea may be illustrated by the following example. 
Example 1. Let us consider the second order system 

 1 2

2 2 i

x = x
x = x + u i = 1,2 ,

 (1) 

where x1(t) and x2(t) denote the system state variables, with the following two feedback 
control laws 

 ( )1 1 1 2 2 1u = f x ,x = -x - x  (2) 

 ( )2 2 1 2 2 1u = f x ,x = -x - 4x  (3) 

The performance of system (1) controlled according to (2) is shown in Fig. 1, and Fig. 2 
presents the behaviour of the same system with feedback control (3). It can be clearly seen 
from those two figures that each of the feedback control laws (2) and (3) ensures the system 
stability only in the sense of Lyapunov. 
However, if the following switching strategy is applied 

 { }
{ }

1 2

1 2

1 for min x ,x < 0
i =

2 for min x ,x 0
⎧⎪
⎨

≥⎪⎩
 (4) 

then the system becomes asymptotically stable. This is illustrated in Fig. 3. Moreover, it is 
worth to point out that system (1) with the same feedback control laws may exhibit 
completely different behaviour (and even become unstable). For example, if the switching 
strategy (4) is modified as 

 { }
{ }

1 2

1 2

1 for min x ,x 0
i =

2 for min x ,x < 0
⎧ ≥⎪
⎨
⎪⎩

 (5) 
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then the system output increases to infinity. The system dynamic behaviour, in this 
situation, is illustrated in Fig. 4. 
 

 
Fig. 1. Phase portrait of system (1) with controller (2). 

 

 
Fig. 2. Phase portrait of system (1) with controller (3). 

This example presents the concept of variable structure control (VSC) and stresses that the 
system dynamics in VSC is determined not only by the applied feedback controllers but 
also, to a large extent, by the adopted switching strategy. VSC is inherently a nonlinear 
technique and as such, it offers a variety of advantages which cannot be achieved using 
conventional linear controllers. Our next example shows one of those favourable features – 
namely it demonstrates that VSC may enable finite time error convergence.  
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Fig. 3. Phase portrait of system (1) when switching strategy (4) is applied. 
 

 
Fig. 4. Phase portrait of system (1) when switching strategy (5) is applied. 

Example 2. In this example, again we consider system (1), however now we apply the 
following controller 

 ( ) ( )2 1 2u = -x - a sgn x - b sgn x  (6) 

where a > b > 0. Closer analysis of the behaviour of system (1) with control law (6) 
demonstrates that, in this example, the system error converges to zero in finite time which 
can be expressed as 

 10
a 1 1T = 2 x +
b a - b a + b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (7) 
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where x10 and x20 = 0 represent initial conditions of system (1). Even though the error 
converges to zero in finite time, the number of oscillations in the system tends to infinity, 
with the period of the oscillations decreasing to zero. This is illustrated in Figs. 5 and 6. In 
the simulation example presented in the figures, the following parameters are used a = 7, 
b = 3, x10 = 20 and x20 = 0. Consequently, the system error is nullified at the time instant 
T = 12.045 and remains equal to zero for any time greater than T. Clearly these favourable 
properties are achieved using finite control signal. This controller, due to the way the phase 
trajectory – shown in Fig. 5 – is drawn, is usually called “twisting controller”. It also serves 
as a good, simple example of the second order sliding mode controllers. 
The two examples presented up to now demonstrate the principal properties of VSC 
systems. However, the main advantage of the systems is obtained when the controlled plant 
exhibits the sliding motion (DeCarlo et al., 1988;   Hung et al., 1993;  Slotine & Li, 1991; 
Utkin, 1977). The idea of sliding mode control (SMC) is to employ different feedback 
controllers acting on the opposite sides of a predetermined surface in the system state space. 
Each of those controllers pushes the system representative point (RP) towards the surface, 
so that the RP approaches the surface, and once it hits the surface for the first time it stays on 
it ever after. The resulting motion of the system is restricted to the surface, which 
graphically can be interpreted as “sliding” of the system RP along the surface. This idea is 
illustrated by the following example. 
Example 3. Let us consider another second order plant 

 
( )

1 2

2 1

x = x
x = b cos m x + u b < 1,

 (8) 

where b and m are possibly unknown constants. We select the following line in the state 
space 

 2 1s = x + cx = 0  (9) 

(c = const.) and apply the controller 

 ( )2u = - c x - sgn s  (10) 

In this equation sgn(.) function represents the sign of its argument, i.e. sgn(s < 0) = –1 and 
sgn(s > 0) = +1. With this controller the system representative point moves towards line (9) 
always when it does not belong to the line. Then, once it hits the line, the controller switches 
the plant input (in the ideal case) with infinite frequency. Therefore, line (9) is called the 
switching line. Furthermore, since after reaching the line, the system RP slides along it, then 
the line is also called the sliding line. This example is illustrated in Fig. 7. The system 
parameters used in the presented simulation are c = 0.5, b = 0.75, m = 10 and the simulation 
is performed for the following initial conditions x10 = 5 and x20 = 1. Notice that when the 
plant remains in the sliding mode, its dynamics is completely determined by the switching 
line (or in general the switching hypersurface) parameters. This implies that neither model 
uncertainty nor matched external disturbance affects the plant dynamics (Draženović, 1969) 
which is a highly desirable system property. This property can also be justified 
geometrically, if one notices that in our example the slope of line (9) fully governs the plant 
motion in the sliding mode. Therefore, in SMC systems we usually make the distinction 
between two phases: the first one – called the reaching phase – lasts until the controlled 
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plant RP hits the switching surface, and the second one – the sliding phase – begins when 
the RP reaches the surface. In the latter phase the plant insensitivity to a class of modeling 
inaccuracies and external disturbances is ensured. Let us stress that the system robustness 
with respect to unmodeled dynamics, parameter uncertainty and external disturbances is 
guaranteed only in the sliding mode. Therefore, shortening or (if possible) even complete 
elimination of the reaching phase is an important and timely research issue (see for example 
Bartoszewicz & Nowacka-Leverton, 2009; Pan & Furuta, 2007; Sivert, 2004; Utkin & Shi, 
1996) in the field of SMC. 
 

 
Fig. 5. Phase portrait of system (1) controlled according to (6). 

 

 
Fig. 6. State variables of system (1) controlled according to (6). 
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Fig. 7. Phase trajectory of system (1) controlled according to (10). 

Another immediate consequence of the fact that in the sliding mode, the system RP is 
restricted to the switching hypersurface (which is a subset of the state space) is reduction of 
the system order. If the system of the order n has m independent inputs, then the sliding 
mode takes place on the intersection of m hypersurfaces and the reduced order of the 
system is equal to the difference n – m. To be more precise, in multi-input systems the 
sliding mode may take place either independently on each switching hypersurface or only 
on the intersection of the surfaces. In the first case the system RP approaches each surface at 
any time instant and once it hits any of the surfaces it stays on this surface ever after. In the 
latter case, however, the system RP does not necessarily approach each of the surfaces, but it 
always moves towards their intersection. In this case the system RP may hit a surface and 
move away from it (might possibly cross a switching surface), but once it reaches the 
intersection of all the surfaces, then the RP never leaves it. 
One of the major tasks in the SMC system design is the selection of an appropriate control 
law. This can be achieved either by assuming a certain kind of the control law (usually 
motivated by some previous engineering experience) and proving that this control satisfies 
one of the so-called reaching conditions or by applying the reaching law approach. The 
reaching conditions (Edwards & Spurgeon, 1998) ensure stability of the sliding motion and 
therefore they are naturally derived using Laypunov stability theory. On the other hand, if 
the reaching law approach is adopted for the purpose of a sliding mode controller 
construction (Bartoszewicz, 1998; Bartoszewicz, 1996;  Gao et al, 1995;  Golo & Milosavljević, 
2000;  Hung et al., 1993), then a totally different design philosophy is employed. In this case 
the desired evolution of the switching variable s is specified first, and then a control law 
ensuring that s changes according to the specification is determined. 
Sliding mode controllers guarantee system insensitivity with respect to matched disturbance 
and model uncertainty (Draženović, 1969), and cause reduction of the plant order. 
Moreover, they are computationally efficient, and may be applied to a wide range of 
various, possibly nonlinear and time-varying plants. However, often they also exhibit a 
serious drawback which essentially hinders their practical applications. This drawback – 
high frequency oscillations which inevitably appear in any real system whose input is 
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supposed to switch infinitely fast – is usually called chattering. If system (8) exhibits any, 
even arbitrarily small, delay in the input channel, then control strategy (10), will cause 
oscillations whose frequency and amplitude depend on the delay. With the decreasing of 
the delay time, the frequency rises and the amplitude is getting smaller. This is a highly 
undesirable phenomenon, because it causes serious wear and tear on the actuator 
components. Therefore, a few methods to eliminate chattering have been proposed. The 
most popular of them uses function 

 ( )

- 1 for  s < -ρ
1sat s = s for  s ρ
ρ

1 for  s > ρ

⎧
⎪
⎪ ≤⎨
⎪
⎪⎩

 (11) 

instead of sgn(s) in the definition of the discontinuous control term. With this modification 
the term becomes continuous and the switching variable does not converge to zero but to 
the closed interval [–ρ, ρ]. Consequently, the system RP after the reaching phase 
termination, belongs to a layer around the switching hyperplane and therefore this strategy 
is called boundary layer controller (Slotine & Li, 1991). 
Other approaches to the chattering elimination include: 
• introduction of other nonlinear approximations of the discontinuous control term, for 

example the so called fractional approximation defined as  

 ( ) sapprox s =
+ sε

 (12) 

where ε  is a small positive constant (Ambrosino et al., 1984;  Xu et al., 1996); 
• replacing the boundary layer with a sliding sector (Shyu et al., 1992;  Xu et al., 1996); 
• using dynamic sliding mode controllers (Sira-Ramirez, 1993a; Sira-Ramirez, 1993b;  

Zlateva, 1996); 
• using fuzzy sliding mode controllers (Palm, 1994; Palm et al., 1997); 
• using second (or higher) order sliding mode controllers (Bartolini et al., 1998;  

Levant, 1993). 
The phenomenon of chattering has been extensively analyzed in many papers using 
describing function method and various stability criteria (Shtessel & Lee, 1996). 
As it has already been mentioned, the switching surface completely determines the plant 
dynamics in the sliding mode. Therefore, selecting this surface is one of the two major tasks 
in the process of the SMC system design. In order to stress this issue let us point out that the 
same controller which has been considered in the last example may result in a very different 
system performance, if the sliding line slope c is selected in another way. This can be easily 
noticed if one takes into account any negative c. Then, controller (10) still ensures stability of 
the sliding motion on line (9), i.e. the system RP still converges to the line, however the 
system is unstable since both state variables x1 and x2 tend to (either plus or minus) infinity 
while the system RP slides away from the origin of the phase plane along line (9). 
Since sliding mode control is well known to be a robust and computationally efficient 
regulation technique which may be applied to nonlinear and possibly time-varying plants, 
then the proper design of the sliding mode controllers has recently become one of the most 
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extensively studied research topics within the field of control engineering. This design 
process usually breaks into two distinct parts: in the first part the switching surface is 
selected, and in the second one the control signal which always makes the system 
representative point approach the surface is chosen. Once the representative point hits the 
surface, then under the same control signal, the point remains on the surface. Thus, the 
switching surface fully determines the system dynamics in the sliding mode and should be 
carefully selected by the system designer.  
In this chapter we consider the second order, nonlinear, time-varying system subject to the 
acceleration and velocity constraints. We introduce a continuously time-varying switching 
line adaptable to the initial conditions of the system which guarantees the existence of a 
sliding mode on this line. At the time t = t0 the line passes through the representative point, 
specified by the initial conditions of the system, in the error state space. Afterwards, the line 
moves smoothly, with a constant deceleration and a constant angle of inclination, to the 
origin of the space and having reached the origin the line remains fixed. Thus the proposed 
control algorithm eliminates the reaching phase and forces the representative point of the 
system to always stay on the switching line. Consequently, our control is robust with respect 
to the external disturbance and model uncertainty from the very beginning of the control 
action. Furthermore, in order to obtain good dynamic performance of the considered 
system, the switching line is designed in such a way that the integral absolute error (IAE) 
over the whole period of the control action is minimised and state constraints are satisfied at 
the same time. The presented method is verified by the simulation example.   
The control algorithm proposed in this chapter may be regarded as an alternative solution to 
the elegant and currently widely accepted integral sliding mode control technique (Utkin & 
Shi, 1996). The main advantage of our approach is explicit consideration of state constraints 
in the controller design process. Furthermore, the novelty of our work demonstrates itself 
also in the IAE optimal performance and error convergence without oscillations or 
overshoots.  

2. Problem formulation 
In this chapter we consider the time-varying and nonlinear, second order system described 
by the following equations 

 1 2

2

x = x
x = f(x, t) +Δf(x, t) + b(x,t)u + d(t)

 (13) 

where x1, x2 are the state variables of the system and x(t) = [x1(t) x2(t)]T is the state vector, t 
denotes time, u is the input signal, b, f – are a priori known, bounded functions of time and 
the system state, Δf and d are functions representing the system uncertainty and external 
disturbances, respectively. Further in this chapter, it is assumed that there exists a strictly 
positive constant δ which is the lower bound of the absolute value of b(x, t), i.e. 
0 < δ = inf{|b(x, t)|}. Furthermore, functions Δf and d are unknown and bounded. 
Therefore, there exists a constant μ which for every pair (x, t) satisfies the following 
inequality |Δf (x, t) + d(t)| ≤ μ. The initial conditions of the system are denoted as x10 , 
x20 where x10 = x1(t0), x20 = x2(t0). System (13) is supposed to track the desired trajectory given 
as a function of time xd (t) = [x1d (t)   x2d (t)]T where 2d 1dx (t) = x (t)  and x2d (t) is a 
differentiable function of time. The trajectory tracking error is defined by the following 
vector 
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 e(t) = [e1(t)  e2(t)]T = x(t) – xd(t) (14) 

Hence, we have e1(t) = x1(t) – x1d (t) and e2 (t) = x2(t) – x2d (t). 
In this chapter it is assumed that at the initial time t = t0, the tracking error and the error 
derivative can be expressed as  

 ( ) ( )1 0 0 2 0e t = e 0, e t = 0≠  (15) 

where e0 is an arbitrary real number different from zero. This condition is indeed satisfied in 
many practical applications such as position control or set point change of second order 
systems. An example of these applications is point to point (PTP) control of robot 
manipulators, that is moving the manipulator arm from its initial location where it is 
originally at a halt, to another predefined position at which the arm stops and again is 
expected to remain at rest. 
Further in this chapter, we present a detailed description of the sliding mode control 
strategy which ensures optimal performance of the system and its robustness with respect to 
both the system uncertainty Δf (x, t) and external disturbance d(t). 

3. Sliding mode controller 
In order to effectively control system (13), i.e. to eliminate the reaching phase and to obtain 
system insensitivity with respect to both external disturbance d(t) and the model uncertainty 
Δf (x, t) from the very beginning of the system motion, we introduce a time-varying 
switching line. The line slope does not change during the control process, which implies that 
the line moves on the phase plane without rotating. In other words, the line is shifted in the 
state space with a constant angle of inclination. At the beginning the line moves with a 
constant deceleration in the state space and then it stops at a time instant tf > t0 . 
Consequently, the switching line can be described by the following equation 

 s(e, t) = 0  where ( )2
2 1s(e, t) = e (t) + ce (t) + Ct + Bt + A δ  (16) 

where  

 
[ )
[ )

f

f

1 for t 0, t
δ =

0 for t t ,
⎧ ∈⎪
⎨

∈ ∞⎪⎩
 (17) 

and c, A and B are constants. The selection of these constants will be considered further in 
this chapter.  
In order to ensure system (13) stability in the sliding motion on the line described by 
equations (16) parameter c in this equation must be strictly positive, i.e. c > 0.  Furthermore, 
in order to actually eliminate the reaching phase, and consequently to ensure insensitivity of 
the considered system from the very beginning of its motion, constants A, B, C and c should 
be chosen in such a way that the representative point of the system at the initial time t = t0 
belongs to the switching line. For that purpose, the following condition must be satisfied  

 ( ) ( ) ( ) 2
0 0 2 0 1 0 0 0s e t , t = e t + ce t + Ct + Bt + A = 0⎡ ⎤⎣ ⎦  (18) 

Notice that the input signal 
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 ( ) ( ){ }2 2du = -f(x, t) - ce (t) + x (t) - 2Ct + B δ - γsgn s e,t b(x, t)⎡ ⎤⎣ ⎦  (19) 

where γ = η + μ and η is a strictly positive constant, ensures the stability of the sliding 
motion on the switching line (16). In order to verify this property we consider the product 

[ ]2 2s(e, t)s(e, t) = s(e, t) e (t) + ce (t) + (2Ct + B)δ . Taking into account (13) and (19), we obtain  

 
[ ]

( ){ } ( )
2 2s(e, t)s(e, t) = s(e, t) f(x, t) +Δf(x, t) + b(x,t)u + d(t) - x (t) + ce (t) + (2Ct + B)

                         = s(e, t) Δf(x, t) - γsgn s e,t + d(t) η s e, t

δ =

⎡ ⎤ ≤ −⎣ ⎦
 (20) 

which proves the stability of the sliding motion on the switching line (16). In order to find 
the system tracking error we solve equation (16).  First we consider the following equation 

 2
2 1e (t) + ce (t) + Ct + Bt + A = 0  (21) 

which determines the considered switching line for any time t ≤ tf, i.e. when the line moves 
and δ=1. Solving equation (21) with initial condition (15) and assuming for the sake of 
clarity that t0 = 0, we can calculate the tracking error and its derivative for the time t∈〈0, tf). 
Furthermore, taking into account condition (18) and the assumption that t0 = 0 we obtain 

 0A = - ce  (22) 

Then, the tracking error and its derivative can be written as 

 -ct 2
1 02 3 2 2 3

B 2C C 2C - cB B 2Ce (t) = - +  e - t + t + e + -
cc c c c c

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (23) 

 -ct
2 2 2

B 2C 2C 2C - cBe (t) = -  e - t +
c cc c

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (24) 

Now we solve equation  

 2 1e (t) + ce (t) = 0  (25) 

which determines the considered switching line for any time t > tf i.e. for the time when the 
line does not move which is equivalent to the case δ=0. For this purpose we calculate values 
of (23) and its derivative (24) for t = tf 

 f-ct 2
1 f f f 02 3 2 2 3

B 2C C 2C - cB B 2Ce (t ) = - +  e - t + t + e + -
cc c c c c

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (26) 

 f-ct
2 f f2 2

B 2C 2C 2C - cBe (t ) = -  e - t +
c cc c

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (27) 

Then, after some calculations, we obtain the evolution of the tracking error 

 fct2 -ct
1 f f 02 3 2 2 3

B 2C C 2C - cB B 2Ce (t) = - + + - t + t + e + - e  e
cc c c c c

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (28) 
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 fct2 -ct
2 f f 02 2

B 2C 2C - cB B 2Ce (t) = - + Ct - t - ce - + e  e
c c cc c

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (29) 

Notice that the error described by (23) and (28) converges to zero monotonically. Next, we 
show the procedure for finding the optimal switching line. 

4. Switching line design 
Now we present how to choose the optimal switching line under the assumption that the line 
moves with a constant deceleration to the origin of the error state space. It means that we 
consider the line defined by (16) where C≠ 0. Notice that for the time t>tf , switching line (16) is 
fixed and passes through the origin of the error state space. This leads to the condition 

 2
f fCt + Bt + A = 0  (30) 

Furthermore, in order to avoid rapid input changes, the velocity of the introduced line 
should change smoothly. Thus, the following condition should hold 

 f2Ct + B = 0  (31) 

Using relations (30), (31) and (22), we obtain the formula expressing the time when the line 
stops moving 

 0
f

2e ct =
B

 (32) 

In order to choose the switching line parameters, the integral of the absolute error (IAE)  

 10
J = e (t) dt

∞

∫  (33) 

is minimised subject to the system velocity  

 2 maxe (t) v≤  (34) 
and the system acceleration 

 2 maxe (t) a≤  (35) 

constraints, where vmax, amax represent the maximum admissible velocity and maximum 
admissible acceleration of the considered system, respectively. In order to facilitate further 
minimisation procedure, we define the following positive constant  

 
2

0e ck =
B

 (36) 

From (36), we get  

 
0

Bkc =
e

 (37) 

We begin the procedure for finding optimal switching line parameters with calculating the 
IAE criterion. Substituting equations (23) and (28) into (33), calculating appropriate integrals 
and considering relation (37), we obtain  
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3 2

0e 1 2J(k,B) = + k
3kB

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (38) 

This criterion will be minimised with constraints (34) and (35). Since the considered criterion 
decreases with increasing value of B, the minimisation procedure of two variable function 
J(k, B) can be replaced by the minimisation of a single variable function. This remark will be 
very useful further in the chapter. Considering constraints, firstly we take into account each 
of the two constraints separately, and then we require both of them to be satisfied 
simultaneously.  

4.1 Velocity constraint 
In this section we will consider system (13) subject to velocity constraint (34). For any time 
t ≤ tf the system velocity is described by equation (24) and for the time t ≥ tf by relation (29). 
Calculating the maximum value of 2e (t)  we get 

 ( )
2

ln 1 + 2kBmax e (t) = - 1
c 2k
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (39) 

Then using relations (34), (39) and taking into account condition (37), we obtain the 
following inequality 

 ( ) -22
max

0

ln 1 + 2kv kB - 1
e 2k

⎡ ⎤
≤ ⎢ ⎥

⎣ ⎦
 (40) 

As it was mentioned, because criterion (38) decreases with increasing value of |B| the 
minimisation of criterion J as a function of two variables (k, B) with the velocity constraint 
may be replaced by the minimisation of the following single variable function  

 ( )2
0

v
max

ln 1 + 2ke 1 2J (k) = - 1 +
v 2k k 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (41) 

This function, for any fixed k expresses the minimum value of criterion J(k, B) which can be 
achieved when the velocity constraint is satisfied. Closer analysis of this criterion as a single 
variable function shows that (41) reaches its minimum for numerically found argument 
kv opt ≈ 13.467. Then, the optimal parameter B can be calculated from  

 ( ) ( )
-22

max
0

0

ln 1 + 2kv kB = - 1 sgn e
e 2k

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (42) 

Substituting kv opt into (42), we obtain  

 
( )

( )
-2

2
v optmax v opt

v opt 0
0 v opt

ln 1 + 2kv k
B = - 1 sgn e

e 2k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (43) 

The other switching line parameters can be derived from (22), (31), (32) and (37) , and they 
are given below 
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( ) 1

v opt
v opt max v opt 0

v opt

ln 1 + 2k
A = v k - 1 sgn(e )

2k

−

 (44) 

 ( )v opt0
f v opt

v optmax

ln 1 + 2k2 e
t = - 1

2kv
 (45) 

 ( )
( )

3
3

v optmax v opt
v opt 02

v opt0

ln 1 + 2kv k
C = - - 1 sgn e

2k4e

−

 (46) 

 ( )v optmax v opt
v opt

0 v opt

ln 1 + 2kv k
c = - 1

e 2k
 (47) 

That concludes the analysis of the velocity constraint taken into account separately. 

4.2 Acceleration constraint 
Now we consider the system acceleration constraint given by (35). Let us calculate the 
greatest value of 2e (t) . The maximum absolute value of this signal, achieved at the initial 
time t0 = 0 is equal to 2e (0) = B . Then, the acceleration constraint can be expressed as 
follows 

 maxB a≤  (48) 

Now we will analyse the criterion J minimisation task. Notice that for any given value of k, 
the minimum of criterion (38) is obtained for the greatest value of |B| satisfying constraint 
(48). Therefore, the solution of the considered minimisation task can be found as a minimum 
of the following single variable function J 

 
3 2

0
a

max

e 1 2J (k) = + k
3a k

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (49) 

In order to analyse the minimisation task we calculate the derivative of expression (49) with 
respect to k. Then, we conclude that function (49) reaches its minimum for ka opt = 1.5 and the 
optimal parameter B can be calculated from  

 ( )max 0B = a sgn e  (50) 

The other optimal switching line parameters can be calculated from relations   

 max 0
a opt 0

3a e
A = - sgn(e )

2
 (51) 

 0
f a opt

max

6 e
t =

a
 (52) 
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 ( )
3 2
max

a opt 0
0

aC = - sgn e
2 6 e

 (53) 

 max
a opt

0

3ac =
2 e

 (54) 

That ends our presentation of the algorithm for switching line design with the acceleration 
constraint.  

4.3 Velocity and acceleration constraint 
Finally, we consider both of constraints, i.e. the system velocity and the system acceleration 
and we require that they are satisfied at the same time. In order to minimise the considered 
criterion with constraints (34) and (35), we will minimise the following function of a single 
variable k  

 ( ) ( ) ( )v a v aJ k = max J k , J k⎡ ⎤⎣ ⎦  (55) 

This minimisation task can be solved by considering three cases (which are illustrated in 
Figs. 8-10 ): 
1. ( ) ( )v a opt a a optJ k J k≤  

2. ( ) ( )v v opt a v optJ k J k≥  

3. ( ) ( )v a opt a a optJ k J k>  and ( ) ( )v v opt a v optJ k J k<  
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Fig. 8. Criteria  ( )vJ k  and ( )aJ k  - case 1. 

In the first case, the optimal value of k is given by opt a optk = k = 1.5 , and then parameter 
Bopt is given by formula (50). In the second case we obtain that opt v optk = k 13.467≈  and Bopt 
can be calculated from equation (42). In the last case, in order to find the optimal solution, 
we solve (numerically) equation ( ) ( )v aJ k - J k = 0  in the interval ( )a opt v optk ,k . Substituting 
numerically found value kopt into either (42) or (50), we get the optimal value of B. The other 
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optimal switching line parameters can be derived from (22), (31), (32) and (37). In this way 
we design the switching line which is optimal in the sense of the IAE criterion and 
guarantees that the state constraints are satisfied. 
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Fig. 9. Criteria  ( )vJ k  and ( )aJ k  - case 2. 
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Fig. 10. Criteria  ( )vJ k  and ( )aJ k  - case 3. 

5. Simulation examples 
In order to illustrate and verify the proposed method of the switching line design, we 
consider a suspended load described as follows 

 ( )1 2 2 2 1 2x = x , x = -0.15x + F - f x ,x m⎡ ⎤⎣ ⎦  (56) 

where m = 1 kg and ( ) ( ) ( )1 2 2 2 2f x ,x = 0.1sgn x + 0.049x x + 0.1π  represents model 
uncertainty, i.e. unknown friction in the system. Consequently, γ = 0.15. The initial condition 
x0 = 0.1 m. The demand position of system (56) is xd = 7 m. We require that vmax = 0.3  m/s 
and amax = 0.1 m/s2. Then, using the presented algorithm, we obtain that 
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( ) ( )v a opt a a optJ k J k>  and ( ) ( )v v opt a v optJ k J k< , and the optimal value of k can be found 
numerically. In the considered example it is equal to optk 4.0612≈  . Consequently, we 
obtain the following set of the optimal parameters Aopt ≈ 1.674 m/s, Bopt = – 0.1 m/s2, 
c opt ≈ 0.2426 1/s and C opt ≈  0.0015  m/s3. The line stops moving at the time instant tf opt 
equal to 33.48s. 
Simulation results for the system with this line are shown in Figures 11 – 14. From Figure 11 
it can be seen that the load reaches its demand position without oscillations or overshoots. 
Figure 12 presents the system velocity. The system acceleration is illustrated in Figure 13. 
The plots confirm that the required constraints are always satisfied. Furthermore, the system 
is insensitive from the very beginning of the control process. Figure 14 illustrates the phase 
trajectory of the controlled plant. 
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Fig. 11. System error evolution. 
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Fig. 12. System velocity. 
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Fig. 13. System acceleration. 
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Fig. 14. Phase trajectory. 

6. Conclusion 
In this chapter, we proposed a method of sliding mode control. This method employs the 
time-varying switching line which moves with a decreasing velocity and a constant angle of 
inclination to the origin of the error state space. Parameters of this line are selected in such a 
way that integral the absolute error (IAE) is minimised with the system acceleration and the 
system velocity constraints. Furthermore, the tracking error converges to zero monotonically 
and the system is insensitive with respect to external disturbance and the model uncertainty 
from the very beginning of the control action. 
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1. Introduction

This chapter discusses design methods for improving sliding mode control system (Chern &
Wu, 1992b; Sato, 2010; Utkin, 1977). Variable structure control (VSC) can be easily applied
to nonlinear systems and is robust to plant parameter variation or load disturbance because
of the existence of a sliding mode. Hence, it has been applied to various systems (e.g., an
inverted pendulum system, a magnetic levitation system and robot manipulators (Ashrefiuon
& Whitman, 2010; Bandal & Vernekar, 2010; Zergeroglu & Tatlicioglu, 2010)).
VSCmethods employing integral compensation have been proposed to achieve servo tracking
in the presence of load disturbance or plant parameter variation (Chern &Wu, 1991; 1992a;b).
Robust tracking servo can be attained with a controller using integral compensation but
the integral action causes phase lag, which deteriorates control performance. However,
proportional compensation can adjust the gain propertywithout changing the phase property.
Hence, if control systems are designed to use proportional compensation as well as integral
compensation, control performance can be further improved. Therefore, this chapter discusses
a method for designing a sliding mode controller using both proportional and integral
compensations. Hence, this method has higher potential than conventional methods (Chern
& Wu, 1991; 1992a;b). In particular, robust servo tracking in steady state is achieved by
using integral compensation, and transient response is enhanced by using proportional
compensation. Hence, both responses are improved. In conventional methods, to determine
the switching plane and the integral gain, a quadratic function is minimized by using the
optimal linear regulator technique (Chern & Wu, 1992b) or the characteristics equation of
a closed-loop system is assigned to have desired eigenvalues (Chern & Wu, 1991; 1992a).
The design methods discussed in this chapter employ the optimal linear regulator technique
to determine an optimal switching plane, proportional gain and integral gain to stabilize a
closed-loop system.
To demonstrate the potential of these design methods, the designed variable structure
controllers are applied to an inverted pendulum system that has been developed to study
bifurcations and chaos (Kameoka, 2003; Sato et al., 2005; 2006). Because of the existence of
unknown disturbances and unmodeled factors, its exact dynamic characteristics cannot be
obtained. Hence, desired control performance cannot be attained if the system is controlled
by using a controller based on a variable structure configuration. The potential of the design
methods is confirmed by applying these methods to this system, as shown by simulation and
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experimental results. Note that the main purpose of this chapter is not to control chaos but
to develop a new method for designing a variable structure controller for improving control
performance in the presence of load disturbance or plant parameter variation.
This chapter is organized as follows. In Section 2, three control systems are designed: a
design method using integral compensation (2.1), proportional compensation (2.2) and both
proportional and integral compensations (2.3). Section 3 gives simulation and experimental
results to evaluate three method methods. Finally, concluding remarks and future works are
given.

2. Design of Sliding Mode Control Systems

Consider a controlled system described as

ẋi = xi+1 (i = 1, · · · , n− 1) (1)

ẋn = −
n

∑
i=1

aixi + bu− fd (2)

where xi(i = 1, · · · , n), u and fd are the state variable, the control input and the disturbance,
respectively. x1 is the plant output, and ai(i = 1, · · · , n) and b are the plant parameters.
To have the plant output converge to its reference input without steady-state error, a method
with integral compensation (Chern &Wu, 1992b) is designed as described in 2.1, and a design
method using proportional compensation and a method using both proportional and integral
compensations (Sato, 2010) are designed as described in 2.2 and 2.3, respectively. For the
simplicity of description, this study deals with the case of n = 2.

2.1 Control with integral compensation
Chern & Wu (1992b) proposed an integral variable structure controller to achieve servo
tracking.

2.1.1 Design of control law with integral compensation
Error variable z is defined as:

ż = r− x1 (3)

where r is the desired state of x1 and is set by a user. Switching function σ is chosen as:

σ = S1(x1 − KIz) + x2 (4)

where S1 is a constant, and constant KI is referred to as an integral gain. Equation (4) is
differentiated with respect to t, and σ̇ is calculated as:

σ̇ = S1(ẋ1 − KIż) + ẋ2 (5)

Substituting equations (1) and (2) into equation (5), the next equation is obtained as:

σ̇ = S1(x2 − KI(r− x1)) − a1x1 − a2x2 + bu− fd (6)
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The dynamic characteristics of the switching function are assigned by the differential
equation:

σ̇ = −Qssat(σ) − Ks f (σ) (7)

where Qs and Ks are arbitrary positive integers, and sat means saturation and is defined as:

sat(σ) =

⎧⎪⎨
⎪⎩
1 (σ > L)
σ

L
(|σ| ≤ L)

−1 (σ < −L)
(8)

σ f (σ) > 0 is required because the condition for existence of a sliding mode is limσ→0 σσ̇ < 0
(Utkin, 1977). Hence, f (σ) is set as f (σ) = σ. Then, equation (7) is rewritten as:

σ̇ = −Qssat(σ) − Ksσ (9)

Based on equations (6) and (9), a control law is derived as:

u = [−S1(x2 − KI(r− x1)) + a1x1 + a2x2 + fd −Qssat(σ) − Ksσ] /b (10)

2.1.2 Design of switching surface and integral gain
While in the sliding mode, the use of σ = 0 yields:

x2 = −S1(x1 − KIz) (11)

Equation (11) is substituted into equation (1), and the following equation is obtained.

ẋ1 = −S1(x1 − KIz) (12)

Then,

x = Ax + Bv + Er

v = Sx

where

x =
[
z
x1

]
, A =

[
0 −1
0 0

]
, B =

[
0
1

]
, E =

[
1
0

]
, S =

[
S1KI −S1

]
The optimal gain of S is found by means of the optimal linear regulator technique (Chern &
Wu, 1992b), and it is derived by minimizing quadratic index I given as:

I =
1
2

∫ ∞

ts
(xTQTx + vRv)dt (13)

where Q = QT > 0 and R > 0 are a weighting matrix and a weighting parameter, and ts is
the time from when the sliding mode begins (Anderson & Moore, 1971). Weighting matrix Q
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can be chosen as:

Q = DTD

where D is a 1× n vector and pair (A,D) is observable. Then, the solution that minimizes the
quadratic index is given as:

S = −R−1BTP

where P is the solution of the Riccati equation given as:

PA + ATP− PBR−1BTP + Q = 0 (14)

2.2 Control with proportional compensation
A controller employing proportional compensation is designed as described herein before a
variable structure controller employing both proportional and integral compensations to be
discussed in 2.3 (Sato, 2010).
The controller designed in this section cannot achieve robust servo tracking, but in comparison
to the controllers employing integral compensation designed as described in 2.1 and 2.3, the
effectiveness of proportional compensation in variable structure control can be confirmed.

2.2.1 Design of control law with proportional compensation
Switching function σ is defined as:

σ = S1(x1 − r) + x2 (15)

Equation (15) can be differentiated. Hence,

σ̇ = S1ẋ1 + ẋ2

Based on equations (1) and (2), the equation given above is rewritten as:

σ̇ = S1x2 − a1x1 − a2x2 + bu− fd

Using equations (9) and the above equation, a control law is obtained as:

S1x2 − a1x1 − a2x2 + bu− fd = −Qssat(σ) − Ksσ (16)

2.2.2 Design of switching surface and proportional gain
While in the sliding mode (σ = 0), equation (15) is rewritten as:

x2 = −S1(x1 − r) (17)

Using equation (17), equation (1) is rewritten as:

ẋ1 = −S1(x1 − r)
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Then,

ẋ = Ax + Bv + Er

v = Sx

where

x = x1, A = 0, B = −1, E = S1, S = S1

Using the Riccati equation (14), control parameter S1 is decided.

2.3 Control with both proportional and integral compensations
A controller is designed using both proportional and integral compensations as described in
this section (Sato, 2010).

2.3.1 Design of control law with both proportional and integral compensation
Switching function σ is defined as:

σ = S1(x1 − r− KIz) + x2 (18)

and

σ̇ = S1(ẋ1 − KIż) + ẋ2 (19)

where equation (18) can be differentiated with respect to t. Because equation (19) is
equivalent to equation (5), a control law is derived as:

u = [−S1(x2 − KI(r− x1)) + a1x1 + a2x2 + fd −Qssat(σ) − Ksσ] /b (20)

2.3.2 Design of switching surface and proportional and integral gains
Using E = [1 S1]T, the control parameters of this law are decided in the same way as 2.1.2.

3. Application

3.1 Controlled plant and controller design
The controlled object is an inverted pendulum, which is a nonlinear system (Kameoka, 2003).
The model of the inverted pendulum system is illustrated in Fig. 1, and its motion equation is
given as:

Jθ̈ + Cθ̇ + Kθ −mgh sin θ = mhaω2 cos θ sinωt+ u (21)

where θ and u are expressed as functions of t. The system parameters in the motion
equation are shown in Table 1. In particular, the damping coefficient C depends on room
air temperature and is sensitive to slight changes in surroundings because the damper is an
air damper. The control objective is to control the pendulum rod at a specified angle. To this
end, controllers were designed using sliding mode control, as described in 2.1, 2.2 and 2.3,
respectively.
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Movable base

Pendulum rod

a sin ωt

θ

Fig. 1. Model of an inverted pendulum system

θ [rad] angle of a pendulum rod
θ̇ [rad/s] angular velocity of a pendulum rod
J [kgm2] moment of inertia
C [Ns ·m/rad] damping coefficient
K [Nm/rad] spring modulus
m [kg] mass of a pendulum rod
g [m/s2] gravity acceleration
h [m] distance between the center of gyration

and the center of gravity of a pendulum rod
a [m] amplitude of oscillation
ω [rad/s] angular frequency
u [Nm] input torque

Table 1. System parameters in motion equation (21)

Three control methods derived in 2.1, 2.2 and 2.3 are applied to the inverted pendulum
system, and their control results are compared. These control methods are designed to control
a pendulum rod at a specified angle. Their control parameters are calculated on the basis
of system parameters shown in Table 2 given by pre-experiments. The true parameter of
a dumper is K = 0.587, but assuming that there is modeling error, three control laws are
designed as K = 0.5.
The design parameters of the control law employing just proportional compensation derived
in 2.2 are set as:

Q = 10, R = 1, Qs = 0.5, Ks = 1 (22)
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System parameter Physical quantity

J 0.022 [kgm2]
C 0.01 [Nsm/rad]
K 0.587 [Nm/rad]
m 0.547 [kg]
g 9.8 [m/s2]
h 0.113 [m]
a 0.045 [m]
ω 1.34 [rad/s]

Table 2. Physical quantity of system parameters

Compensation method S1 KI

Proportional (15) 3.2 -
Integral (4) 3.3 0.097

Proportional and Integral (18) 3.3 0.097

Table 3. Switching surface and proportional and integral compensators

The design parameters of the method employing just integral compensation derived in 2.1 are
set as:

Q =
[
0.1 0
0 10

]
, R = 1, Qs = 0.5, Ks = 1 (23)

The design parameters of the control law with both the proportional and integral
compensations derived in 2.3 are set to be the same as those obtained from equation (23). The
calculated parameters of the switching surface and proportional and integral compensators
are shown in Table 3. The reference angle of a pendulum rod is set to 10[degree], and
parameter L of the saturation function (8) is set to 0.01. Control is started after 30[s].
An experimental setup is illustrated in Fig. 2. Because of the capability of a DC motor, the
control input is limited as:

|u| < 0.0245

The resolution of an encoder is 0.18[degree].
To compare the control results of three control methods, a performance index is defined as:

E =
100/Ts

∑
k=30/Ts

(r[k] − y[k])2 (24)

where Ts denotes the sampling interval and is set to 50[ms].

3.2 Simulation
Simulations have been conducted using the design parameters (22) and (23). The simulation
results are shown in Fig. 3. The result for proportional compensation is shown in Fig. 3(a),
and it is shown that the pendulum rod could not precisely follow the reference angle and
steady-state error remains because of the modeling error, although its response is quick.
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Movable base Displacement sensor

A/D
PCD/AAMP

Pendulum rod

Angle of a pendulum rodControl input
(to a motor)

Counter

Fig. 2. Experimental setup

The angle for integral compensation is shown in Fig. 3(b), and that for proportional &
integral compensation is shown in Fig. 3(c). It can be seen that the steady-state error can
be eliminated in the case that integral compensation is employed. However, the transient
response of Fig. 3(c) is superior to that of Fig. 3(b) since the control error is quickly improved
by proportional compensation. The scores of (24) are summarized in Table 4, and EP,
EI and EPI show the scores of the control methods employing proportional, integral, and
proportional-integral compensations, respectively. It can be seen that EP is worst because
steady-state error remains. In the case that integral compensation is employed, steady-state
error is eliminated by using integral compensation, and EI is better than EP. In the case
that both proportional and integral compensations are employed, steady-state error can be
eliminated by using integral compensation, and control error can be quickly improved by the
proportional action. Hence, EPI is the smallest.

Employed compensator Control error E

Proportional 3.3× 103 (EP)
Integral 1.1× 104 (EI)

Proportional and Integral 5.4× 102 (EPI)

Table 4. Control error of simulation results

3.3 Experiment
Experiments have been conducted using the same control laws as the simulation. In the
experimental setup shown in Fig. 2, angular velocity θ̇ cannot be directly obtained. Hence,
instead of its true value, the control input is calculated using an estimated value. The
sampling interval Ts is set to be the same as that of the simulation. Experimental results
are shown in Fig. 4. As the performance index (24), the control results are summarized
in Table 5. The experimental results are similar to the simulation results. However, the
obtained plant output, that is, the angle of a pendulum rod, is quantized, and furthermore,
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(c) Proportional and integral compensation

Fig. 3. Simulation results: angle

because its angular velocity cannot be directly obtained, an approximated value is employed
instead of its true value. Hence, an obtained angular velocity is not accurate, and it usually
vibrates. Therefore, a pendulum rod cannot be completely converged to a specified angle
even if integral compensation is employed. However, the method using both proportional
and integral compensations (EPI) is better than the method employing just proportional
compensation (EP). Therefore, the effectiveness of the method using both proportional and
integral compensations is confirmed.

Employed compensator Control error E

Proportional 6.9× 103 (EP)
Integral 1.6× 104 (EI)

Proportional and Integral 6.3× 103 (EPI)

Table 5. Control error of experimental results
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Fig. 4. Experimental results: angle

4. Conclusion

This chapter has discussed new methods for designing a variable structure control. Chern
& Wu (1992b) have designed a sliding mode controller employing integral compensation
to achieve servo tracking. To improve the transient response, a sliding mode controller has
been designed using proportional compensation as well as integral compensation. If a sliding
mode controller is designed using proportional compensation, the transient response can be
improved but the steady-state error remains. However, the problem can be resolved by the
controller using both proportional and integral compensations, which is designed employing
both proportional and integral compensations. Three methods have been applied to an
inverted pendulum system, these control results have been compared compared.
In this chapter, the method using proportional and integral compensations has been derived,
but approaches employing derivative compensation have the potential to improve control
performance if the accurate angular velocity can be obtained because the derivative action
leads phase in the whole frequency domain although it increases gain in the high-frequency
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domain. However, in control of an inverted pendulum system, the derivative action cannot
well work because an obtained angular velocity vibrates due to the quantization of the
obtained output signal.
In this study, a controlled plant is assumed to be a single-rate control system, where both
the plant output and the control input are sampled or updated at the same rate. However,
if a control system is extended into a multirate system, where the sampling interval of the
control input differs from the hold interval of the control input, the control performance can
be enhanced (Bandal & Vernekar, 2010; Bandyopadhyay & Janardhanan, 2006; Inoue et al.,
2007).
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1. Introduction

The sliding mode control (Utkin, 1977; Hung et al., 1993) is robust with respect to certain
structured system uncertainties and disturbances. However, the early version of sliding mode
control adopts a switching function in its design, and this results in high-frequency oscillations
(the so-called chattering) in the control signal. Such control chattering is undesirable since it
can damage the actuator and the system. Among the various solutions to reducing chattering,
the boundary layer design (Burton & Zinober, 1986; Slotine & Sastry, 1983) is probably the
most common approach. In the boundary layer design, a smooth continuous function is used
to approximate the discontinuous sign function in a region called the boundary layer around
the sliding surface. As a result, the control signal in a boundary layer design will contain
no chattering in a noise free environment. However, the boundary layer design has two
disadvantages. First, chattering reduction of the control signal is achieved at the sacrifice of
control accuracy. To obtain smoother control signals, one must adopt a larger boundary layer
width. But a larger boundary layer width results in larger errors in control accuracy. Second,
when there is high-level measurement noise, the boundary layer design becomes ineffective
in chattering reduction.
One of the purposes of this chapter is to show that contrary to the common belief,
the boundary layer design does not completely solve the chattering problem in practical
applications. Essentially this is due to the fact that the boundary layer control design is
still a high gain design, and as a result, its control signal is very sensitive to high-frequency
measurement noise. Control chattering may still take place due to the excitations of
measurement noise. This fact will be demonstrated via the frequency domain analysis.
The other purpose of this chapter is to present a new design for chattering reduction by
low-pass filtering the control signal. The new design will be shown to be able to avoid the
disadvantages of conventional boundary layer design while effectively reduce chattering. The
new design adopts a special control structure, in which an integrator is placed in front of
the system to be controlled. A sliding mode control w is then constructed for the extended
system (the original system plus the integrator). The control signal w hence has chattering,
but the true control signal u going into the system is smooth since the high frequency
chattering in w will be filtered out by the integrator, which acts as a low pass filter. With
such a design, the chattering reduction is achieved by low pass filtering, and at the same
time the control accuracy can be maintained. Another advantage of the new design is that
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in noisy environment, measurement noise causes severe chattering in the signal w, but the
integrator can still effectively filter out the chattering. Hence, the new design has better noise
immunity than the conventional boundary layer design. Previous literature (Sira-Ramirez,
1993; Sira-Ramirez et al., 1996) contains no stability analysis or performance analysis, and does
not address noise-induced chattering. In (Xu et al., 2004), two first-order filters are employed
but again noise-induced chattering is not addressed.
The new low-pass-filtering design for chattering reduction is nevertheless non-trivial. As is
known, the sliding variable in sliding mode control design must be chosen such that control
input shows up in the time derivative of sliding variable. In this way, the control input can
influence how the sliding variable evolves. Such a design guideline must also be observed
in the new design. Hence, the time derivative of the new sliding variable for the extended
system should contain the sliding mode control w. This in turn suggests that the new sliding
variable itself for the extended system contains the integration of w which is the true control
signal u. Since the unknown disturbance d enters the system in the same place as the control
signal u (the so-called matching condition (Corless & Leitmann, 1981)), the new sliding
variable will inevitably contains the unknown disturbance d, and this makes evaluation of
the sliding variable difficult. This is a problem that is unique to the low-pass-filtering design.
Previous literature (Bartolini, 1989; Bartolini & Pydynowski, 1996) has attempted to solve
this problem only with partial success. In (Bartolini, 1989), a variable structure estimator
is proposed to estimate the sliding variable, but it must assume a priori that the system
state is uniformly bounded before proving the system stability. In (Bartolini & Pydynowski,
1996), a one-dimensional observer is proposed to estimate the sliding variable, but stability is
guaranteed only if a differential inequality with bounded coefficients is satisfied. This chapter
will propose a complete solution by using the disturbance estimator proposed in (Chen &
Tomizuka, 1989) for sliding variable estimation. A rigorous stability proof of the new sliding
mode control will also be presented.
This chapter is organized as follows. Section 2 reviews the boundary layer design for the
sliding mode control of a linear uncertain system. A simulation example is given to reveal the
weakness of boundary layer design. Section 3 introduces the new chattering reduction control
design. A second simulation example is given to confirm the advantage of new design. Finally,
Section 4 gives the conclusions.

2. Boundary layer control

The purpose of this section is to review the boundary layer design in sliding mode control for
a linear system with matching disturbance.

2.1 Noise-free boundary layer control
Consider a linear system with matching disturbance :

ẋ0 = Ax0 + B(u0 + d), (1)

where x0 ∈ Rn is the system state available from noise-free measurement, u0 ∈ R1 is the
scalar control input, and d is an unknown disturbance with known upper bounds |d| � D0,
|ḋ| � D1. The system matrices A ∈ Rn×n and B ∈ Rn×1. The pair (A, B) is controllable. The
control objective is to eliminate the interference of the disturbance d with the control u0.
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To achieve this objective, a sliding mode control with boundary layer design has previously
been proposed as :

u0 = −Kx0 + v0, (2)

where K is the state feedback gain that places the poles of (A − BK) to the left half plane so
that there exists a positive definite matrix P satisfying the Lyapunov equation

(A − BK)T P + P(A − BK) = −I, (3)

and v0 is the boundary layer control :

v0 = −ρ
s0

|s0| + ε
, ρ > D0 (4)

with the sliding variable s0 given by

s0 = 2BT Px0, (5)

and ε a small positive number specifying the boundary layer width. Since the above boundary
layer control is a continuous function of the system state, the resultant control signal (2) will
have no chattering phenomenon if there is no measurement noise and unmodeled dynamics.
Note that close to the sliding surface (s0 ≈ 0), the boundary layer control (4) reduces to a
proportional control with high control gain: v0 = −(ρ/ε)s0. This high gain characteristics is
the cause of noise-induced chattering introduced in the next section.

2.2 Noise-corrupted boundary layer control
In order to analyze how the conventional boundary layer control responds to measurement
noise, a zero-mean stochastic noise n is introduced into the measurement of system state x.
The state equation (1) thus becomes :

ẋ1 = Ax1 + B(u1 + d), (6)

where x1 is the noise-affected system state, u1 is the noise-affected control input :

u1 = −K(x1 + n) + v1, v1 = −ρ
s1

|s1| + ε
, (7)

where n is the stochastic measurement noise, and s1 the sliding variable

s1 = 2BT P(x1 + n). (8)

Define the perturbed control input δu = u1 − u0 as the difference between the noise-free u0
in the previous section and noise-affected u1 in this section. Similarly, the perturbed state
δx = x1 − x0 is the difference between the noise-free x0 and noise-affected x1. Since the
measurement noise n is assumed to be of small magnitude, so are δu and δx. As a result,
one can apply linearization technique to the nonlinear boundary layer control system; in
particular, one can derive the linear transfer function Tn(s) from the measurement noise
n to the perturbed control δu. From this transfer function Tn(s), one can learn how the
high-frequency measurement noise n affects the perturbed control δu and the noise-affected
input u1 = u0 + δu. If the high-frequency gain of Tn(s) is large, it suggests that measurement
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noise n can induce high-frequency chattering in the control u1. The derivation procedure of
T1(s) is as follows.
It follows from (1) and (6)

δẋ = Aδx + Bδu, (9)

and from (2) and (7),

δu = −K(δx + n) + v1 − v0. (10)

If one defines f (x) = ρ 2BT Px
|2BT Px|+ε

, according to (4) and (7),

v1 − v0 = − f (x1 + n) + f (x0) � − ∂ f
∂x x=x0

· (x1 + n − x0) = −N(δx + n), (11)

where the second equality results from the Taylor series expansion of f (x1 + n) at x0, and

N =
∂ f
∂x x=x0

= ρ
2BT Pε

(|s0| + ε)2 ∈ R1×n (12)

Note that in the above Taylor series expansion of the nonlinear function f (·), one can neglect
all high-order terms and retains only the first order term because δx + n is small.
Combining equations (10) and (11) gives

δu = −(K + N)(δx + n). (13)

Substituting the above equation into (9) results in the closed-loop transfer function from n to
δx:

δx = −[sI − A + B(K + N)]−1B(K + N)n, (14)

where s represents the Laplace transform operator. Finally, the transfer function from n ∈ Rn

to δu ∈ R1 can be deduced from (13) and (14),

δu = Tn(s) n, Tn(s) = {(K + N)[sI − A + B(K + N)]−1B − I}(K + N). (15)

One may now use Equation (15) to study how the stochastic measurement noise n affects the
control input u1 = u0 + δu in the boundary layer control. In particular, one is interested in
knowing whether the high-frequency measurement noise n will contribute to the chattering
(high-frequency oscillations) of control signals in a boundary layer design. Note that control
chattering occurs only after the sliding variable s0 approaches almost zero. When this occurs,
the vector N in (12) may be approximated by

N � ρ
2BT P

ε
.

One may now plot the Bode diagram of Tn(s) in (15) with the row vector N given as above to
check how sensitive the boundary layer control is to the measurement noise.
A simulation example is given below to show that even if a boundary layer design has been
used, control chattering may still take place due to the measurement noise.
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Example 1: Consider the system (1) with

A =

⎡
⎣

0 1 0
0 0 1
7 −1 2

⎤
⎦ , B =

⎡
⎣

0
0
1

⎤
⎦ ,

and a disturbance d = cos(t) . The sliding mode control (2) and (4) has design parameters:
boundary layer width ε = 1, 0.01, and 0.001 respectively, control gain ρ = 1.2, and state
feedback gain K =

[
67 46 14

]
. From (15), the singular value of transfer function Tn(s) from n

to δu ∈ R1 is plotted in Figure 1.

Fig. 1. Singular values of Tn(s) with different ε

The high gain of Tn(s) at high frequency suggests that the sliding mode control signal is very
sensitive to high-frequency measurement noise. The smaller the boundary layer width ε, the
more sensitive the control input to the measurement noise. As a result, the high frequency
measurement noise n will create substantial high frequency oscillations (chattering) in the
perturbed control δu, and hence in the noise-affected input u1 = u0 + δu. Figure 2 shows the
time response of control input u1, which confirms the existence of high frequency chattering
even if a boundary layer of width ε = 0.005 has been introduced into the sliding mode control
design.

3. Filtered sliding mode control

3.1 Sliding variable design
As is demonstrated in the simulation example 1, sliding mode control with the boundary layer
design still exhibits the chattering phenomenon when there is a high level of measurement
noise. Hence, a solution better than the boundary layer design is required to reduce the
chattering in sliding mode control. To this end, one will introduce the Filtered Sliding Mode
Control in this section, whose control structure is depicted in Figure 3. In Figure 3, an
integrator is intentionally placed in front of the system, and w = u̇ is treated as the control
variable for the extended system. A switching sliding mode control law is chosen for w to
suppress the effects of disturbance d. Even though w is chattering, the control input u to
the system will be smooth because the high-frequency chattering will be filtered out by the
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Fig. 2. Time history of control input

integrator, which acts as a low-pass filter. In other words, the new control design removes
chattering by filtering the control signal, hence, the control structure in Figure 3 is called
Filtered Sliding Mode Control.

Fig. 3. Filtered sliding mode control

Consider a linear system with disturbance:

ẋ = Ax + B(u + d). (16)

For the design of filtered sliding mode control, one chooses the sliding variable as follows.

s2 = ż + λz, z = Cx, (17)

where λ is a positive constant, and the row vector C ∈ R1×n is chosen such that (A, B, C) is of
relative degree one, and the (n − 1) zeros of the system (A, B, C) are in the stable locations. It
will be shown in the proof of Theorem 3 below that when s2 is driven to zero, the system state
x will also be convergent to zero.
Using (17) and (16), one finds

s2 = CAx + CB(u + d) + λCx, (18)
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and, by taking the time derivative of s2,

ṡ2 = (CA2 + λCA)x + (CAB + λCB)u + CBw
+ (CAB + λCB)d + CBḋ.

Note that the control variable w = u̇ appears in the time derivative of the sliding variable s2,
suggesting that one can control the evolution of s2 by properly choosing the control variable w.
However, there is a problem that according to (18), the expression of s2 contains the unknown
disturbance term d. Therefore, it is difficult to evaluate the sliding variable s2.
To solve this problem, one will use the Disturbance Estimator proposed in (Chen & Tomizuka,
1989) to estimate the disturbance d. With an estimate of d, one can obtain an estimate of the
sliding variable s2 via (18). In the sequel, an estimator for the unknown disturbance d will be
constructed based on the scalar variable z defined in (17). Note that z satisfies the following
differential equation,

ż = CAx + CB(u + d), (19)

Call ẑ an estimate of z, and denote the estimation error as

e = z − ẑ.

Construct the governing equation of ẑ as follows.

˙̂z = CAx + βe + CB(u + v), v = ρ
e

|e| + ε
, (20)

where β is a positive constant, ρ an estimator gain larger than the disturbance upper bound
D0, and ε is a positive constant close to zero. With the above estimator (20), an estimate of the
disturbance d will be provided by

d̂ =
β

CB
e + v =

βe
CB

+
ρe

|e| + ε
. (21)

Once one has obtained an estimate of d, one can approximate s2 in (18) by

ŝ2 = CAx + CB(u + d̂) + λCx. (22)

The following theorem proves the effectiveness of the above disturbance estimator (20) and
(21).
Theorem 2: The disturbance estimation error d − d̂, where d̂ is given by (21), will become
arbitrarily small if the estimator gain ρ in (20) is sufficiently large.
Proof: One can refer to the original paper on disturbance estimator (Chen & Tomizuka, 1989).
For completeness of this chapter, a simple proof will be given below. From (19) - (20), one can
easily obtain

ė = −βe − CB(v − d) (23)

= −βe − CB(ρ
e

|e| + ε
− d).

It will be shown that both e and ė will become arbitrarily small if ρ is sufficiently large. Notice
from (23) and (21) that ė = CB(d − d̂). Therefore, the smallness of ė implies the smallness of
d − d̂ and hence, the success of disturbance estimation.
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Let Lyapunov function V1 = 1
2 e2, and take its time derivative,

V̇1 = e ė = e(−βe − CB(v − d))

≤ −βe2 − |CBe|(ρ
|e|

|e| + ε
− D0)

≤ −βn1
2, for all e /∈ N1,

where N1 = {e : |e| < n1 = (εD0)/(ρ − D0)}. With the last inequality, one can prove
(see (Chen & Tomizuka, 1989)) that |e(t)| < n1 for all t > T1 for some finite time T1. Since
n1 = (εD0)/(ρ − D0) becomes arbitrarily small as the disturbance estimator gain ρ becomes
sufficiently large, one concludes that e becomes arbitrarily small within a finite time if ρ is
sufficiently large.
To check the behavior of ė, one chooses V2 = 1

2 ė2, and take its time derivative,

V̇2 = ė ë = ė(−βė − CB(
ρεė

(|e| + ε)2 − ḋ))

≤ −βė2 − ρε|CB||ė|2
(n1 + ε)2 + |CBė|D1, t ≥ T1,

≤ −βė2 − ρε|CBė|
(n1 + ε)2 (|ė| − D1(n1 + ε)2

ρε
), t ≥ T1,

≤ −βn2
2, for all ė /∈ N2,

where N2 = {ė : |ė| < n2 = D1(n1 + ε)2/(ρε)}. From the last inequality, one can prove (Chen
& Tomizuka, 1989) that |ė(t)| < n2 for all t > T2 for some finite time T2. Since n2 = D1(n1 +
ε)2/(ρε) becomes arbitrarily small as the disturbance estimator gain ρ becomes sufficiently
large, one concludes that ė = CB(d − d̂) becomes arbitrarily small within a finite time if ρ is
sufficiently large. End of proof.

3.2 Control variable design
In the filtered sliding mode control, the objective of the control variable w = u̇ is to drive the
sliding variable s2 to (almost) zero in the face of unknown disturbance. For this purpose, one
chooses

u̇ = w
= −(CA2 + λCA)x − (CAB + λCB)u

−σs2 − δ sgn(s2),

where σ > 0, sgn(·) is the sign function, and δ is an upper bound of the uncertainty |Δp| with

Δp = (CAB + λCB)d + ḋ. (24)

As explained in the previous section, it is impossible to evaluate the sliding variable s2 due to
the disturbance d involved. Hence, to implement the proposed control, one uses the estimate
ŝ2 in place of s2,

u̇ = w
= −(CA2 + λCA)x − (CAB + λCB)u

−σŝ2 − δ sgn(ŝ2), (25)
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where ŝ2 comes from (22). Finally, it is commented that in the above filtered sliding mode
control law one can replace the sign function by other smooth approximations such as the
saturation function or other boundary layer design.
From (25), the true control input to the system is given by

u = H(s)w, H(s) =
1
s

. (26)

Even though the switching control w in (25) contains high-frequency chattering, the
high-frequency chattering will be filtered out by the low-pass filter H(s). The control input u
to the real system can be obtained by direct integration and then becomes chattering free.
The following theorem, which is the main result of this chapter, proves that the proposed
control (25) is practically stabilizing.
Theorem 3: The proposed filtered sliding mode control (25) practically stabilizes the system
(16) with bounded control u, in the sense that the system state is asymptotically driven into a
residual set around the origin, with the size of residual set becoming arbitrarily small when
the estimator gain ρ in the disturbance estimator (20) becomes sufficiently large.
Proof: Denote s̃2 = s2 − ŝ2, where s2 and ŝ2 are as given by (18) and (22) respectively. It is easy
to check that s̃2 = CB(d− d̂). To study the evolution of s2, choose Lyapunov function V = 1

2 s2
2

and check its time derivative under the proposed control w in (25),

V̇ = s2[(CA2 + λCA)x + (CAB + λCB)u + CBw
+(CAB + λCB)d + CBḋ]

= s2[−σŝ2 − δ sgn(ŝ2) + Δp]

= −σs2
2 + σs2 s̃2 + s2[−δ sgn(ŝ2) + Δp], (27)

where Δp is as given in (24), and one has used ŝ2 = s2 − s̃2 to obtain the third equality. There
are two possible cases for the square brackets in the above equation.
Case 1. |s2| > |s̃2|: In this case, sgn(ŝ2) = sgn(s2 − s̃2) = sgn(s2). Equation (27) then becomes

V̇ ≤ −σs2
2 + σs2 s̃2 − |s2|(δ − |Δp|)

≤ −σs2
2 + σs2 s̃2

≤ −σ|s2|2 + σ|s2|υ,

where the second inequality results from the design choice δ > |Δp|, and the third inequality
(with υ an arbitrarily small number) comes from Theorem 2 that s̃2 = CB(d − d̂) becomes
arbitrarily small asymptotically. From the last inequality, it is not difficult to show that
asymptotically one has limt→∞ |s2| ≤ υ; that is, s2 becomes arbitrarily small asymptotically.
Case 2. |s2| ≤ |s̃2|: Since s̃2 = CB(d − d̂), it follows from Theorem 2 that |s2| becomes
arbitrarily small asymptotically.
Judging from conclusions of both Case 1 and 2, one can say that the sliding variable s2 becomes
arbitrarily small asymptotically. One next shows that the system state x will also become
arbitrarily small as s2 does. To this end, introduce a state transformation (Isidori, 1989),

x = T
[

z
η

]
, T ∈ Rn×n. (28)

where the external state z ∈ R1 is as defined in (17), and the internal state η ∈ Rn−1 satisfies

η̇ = Qη + Lz, (29)
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for some matrices Q, L, in which Q is a square matrix whose eigenvalues are open-loop zeros
of the triple (A, B, C) (Isidori, 1989). Since, in the design of sliding variable in (17), z = Cx is
chosen such that (A, B, C) has only stable zeros, Q is stable.
When s2 becomes arbitrarily small, it follows from (17) that the external state z also becomes
arbitrarily small since ż + λz = s2 can be regarded as a stable system z subject to small input
signal s2. Similarly, (29) can be regarded as a stable system η subject to small input signal
z. Hence, its state η will also become arbitrarily small asymptotically. Finally, since both
z and η become arbitrarily small, so does the original system state x according to the state
transformation (28). End of proof.
To show the efficacy of the proposed filtered sliding mode control in noisy environments, a
simulation example is presented below.
Example 2: Filtered sliding mode control.
The same system as in Example 1 is tested again for the proposed filtered sliding mode control
(25). Here one has chosen

C = [2, 3, 1] .

The disturbance d = cos(t) and the state measurement is contaminated with a uniform noise
with zero-mean and standard deviation 0.05. One tests the proposed filtered sliding mode
control (25). The parameters are chosen such that λ = 2 in (17) and β = 100, ρ = 1.2, ε = 0.005
in (20). Other design parameters are σ = 30 and δ = 9.6 in (25). The plot of Figure 4(a) shows
the time history of system state, which achieves almost the same performance as that with the
boundary layer control. However, note from the plot of Figure 4(b) that the filtered sliding
mode design has successfully removed chattering in the control input u even in this noisy
environment.

(a) System state

(b) Control input

Fig. 4. Filtered sliding mode control with noise
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4. Conclusions

This chapter first shows via the linearization technique and the frequency domain analysis
that the boundary layer design in the sliding mode control can still exhibit control chattering
due to the excitations of measurement noise. Hence, other solutions to the chattering
reduction such as those in (Chen et al., 2002; 2007) should be searched.
Second, a new design is proposed to reduce control chattering in sliding mode control by
low-pass filtering the control signal. The new design requires estimation of the sliding
variable, and this is achieved by the use of a disturbance estimator. The unique feature of this
new design is that chattering reduction is achieved by low-pass filtering the control signal, and
control accuracy can be maintained by a sufficiently large disturbance estimator gain. This is
contrary to the conventional boundary layer design, where chattering reduction is achieved
at the price of sacrificing the control accuracy. This chapter further shows via simulation
examples that when there is high-level measurement noise, the boundary layer design can no
longer reduce chattering, but the new design in this chapter can effectively reduce chattering
even in noisy environments.
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1. Introduction

The variable structure control is principally characterized by its robustness with respect to
the system’s modeling uncertainties and external disturbances (Decarlo et al. (1988); Filippov
(1960); Lopez & Nouri (2006); Utkin (1992)). Sliding Mode Systems are a particular case of
the Variable Structure Systems (VSS). They are feedback systems with discontinuous gains
switching the system’ s structure according to the state evolution, in order to maintain the
trajectory within some specified subspace called the sliding surface (Utkin (1992)). However,
the application of this control law is confronted to a serious problem. In fact, sliding
mode necessitates an infinite switching frequency which is impossible to realize in numerical
applications because of the calculation time and of the sensors dynamics that can not be
neglected. The discontinuous control generates in that case oscillations on the state and on
the switching function (Utkin (1992)). Owing to the many advantages of the digital control
strategy (Ben Abdennour et al. (2001)), the discretization of the sliding mode control (SMC)
has become an interesting research field. Unfortunately, the chattering phenomenon is more
obvious in this case, because the sampling rate is more reduced.
Many approaches have been suggested in order to resolve this last problem. Most of them
propose a reduction in the oscillation amplitude at cost of the robustness of the control law
(Utkin et al. (1999)). In the eighties, a new control technique, called high order sliding mode
control, have been investigated. Its main idea is to reduce to zero, not only the sliding
function, but also its high order derivatives. In the case of the r-order slidingmode control, the
discontinuity is applied on the (r-1) derivative of the control. The effective control is obtained
by (r-1) integrations and can, then, be considered as a continuous signal. In other words, the
oscillations generated by the discontinuous control are transferred to the higher derivatives of
the sliding function. This approach permits to reduce the oscillations amplitude, the notorious
sliding mode systems robustness remaining intact (Levant (1993)).
Another problem of the SMC is its vulnerability to external disturbances, parametric
variations and non linearity, essentially, during the reaching phase. A solution to this problem,
based on the multimodel approach, was proposed by the authors in (Mihoub et al. (2009a)).
The combination of the multimodel approach and the second order discrete sliding mode
control (2-DSMC) allows resolving both the chattering problem and the vulnerability during
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the reaching phase. A stability analysis of the multimodel discrete second order sliding mode
control (MM-2-DSMC) is proposed in this work. The performances offered by the second
order approach and by the multimodel approach are illustrated by a comparison between
the experimental results on a chemical reactor of the first order DSMC, the 2-DSMC and the
MM-2-DSMC (Mihoub et al. (2009a;b)).

2. Discrete second order sliding mode control

2.1 High order sliding mode approach
The high order sliding mode control concept have been introduced in the eighties at the aim
of resolving the chattering phenomenon. Levantovsky (Levantovsky (1985)) and Emelyanov
(Emelyanov et al. (1986)) proposed to transfer it on the higher derivatives of the control law.
Therefore, the system’s input becomes continuous.
Let’s consider the non linear system defined by:

ẋ = f (t, x, u) (1)

where :

• x(t) = [x1(t), ..., xn(t)]
T ∈ X state vector, X ⊂ Rn.

• u(t, x) is the control.

• f (t, x, u) is a function supposed sufficiently differentiable.

We denote by S(t, x) the sliding function. It is a differentiable function with its (r − 1) first
derivatives relatively to the time depending only on the state x(t) (that means they contain no
discontinuities).
Definition (Salgado (2004))
A slidingmode is said "first order slidingmode" if and only if S(t, x) = 0 and S(t, x)Ṡ(t, x) < 0
A sliding mode is said "rth order sliding mode" if and only if:

S(t, x) = Ṡ(t, x) = ... = S(r−1)(t, x) = 0 (2)

The aim of first order sliding mode control is to force the state to move on the switching
surface S(t, x) = 0. In high order sliding mode control, the purpose is to force the state to
move on the switching surface S(t, x) = 0 and to keep its (r − 1) first successive derivatives
null (Salgado (2004)).
In the case of second order sliding mode control, we must verify:

S(t, x) = Ṡ(t, x) = 0 (3)

We introduce here the equivalent control approach for second order sliding mode control
(Salgado (2004)).
The derivative of the sliding function is:

d
dt

S(t, x) =
∂

∂t
S(t, x) +

∂

∂x
S(t, x)

∂x
∂t

(4)
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Considering the relation (1), we can write:

Ṡ(t, x, u) =
∂

∂t
S(t, x) +

∂

∂x
S(t, x) f (t, x, u) (5)

The second order derivative of S(t, x) is:

d
dt Ṡ(t, x, u) = ∂

∂t Ṡ(t, x, u) + ∂
∂x Ṡ(t, x, u) ∂x

∂t + ∂
∂u Ṡ(t, x, u) ∂u

∂t (6)

This last equation can be written as follow:

d
dt

Ṡ(t, x) = θ(t, x) + ς(t, x)u̇(t) (7)

with:
θ(t, x) = ∂

∂t Ṡ(t, x, u) + ∂
∂x Ṡ(t, x, u) f (t, x, u)

ς(t, x) = ∂
∂u Ṡ(t, x, u)

. (8)

Let’s consider now the new system whose state variables are the sliding function S(t, x) and
its derivative Ṡ(t, x): {

y1(t, x) = S(t, x)
y2(t, x) = Ṡ(t, x)

(9)

By using the equations (8) and (9), we can write:{
ẏ1(t, x) = y2(t, x)
ẏ2(t, x) = θ(t, x) + ς(t, x)u̇(t) (10)

The system described by (10) is a second order system. For this new system a new sliding
function can be proposed:

σ(t, x) = y2(t, x) + αy1(t, x)

= Ṡ(t, x) + αS(t, x) (11)

The system whose input is u̇(t) and output σ(t, x) has got a relative order equal to one and a
sliding mode can be involved on σ(t, x) = 0 (Sira-Ramirez (1988)). The correspondent control
law can be of the form:

u̇(t) = u̇eq(t) − Msign(σ(t, x)) (12)

The term u̇eq(t) is deduced from:

σ̇(t, x) = ẏ2(t, x) + αẏ1(t, x) = S̈(t, x) + αṠ(t, x) = 0 (13)

with: S̈(t, x) = CTẍ(t).

The vector ẍ(t) can be deduced from the considered system:

ẍ(t) =
∂

∂t
f (t, x, u) +

∂

∂x
f (t, x, u)ẋ(t) +

∂

∂u
f (t, x, u)u̇(t) (14)
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The equivalent control for the new system is, then, written:

u̇eq(t) = − 1
CT ∂

∂u f (t,x,u)

(
CT ∂

∂ f (t, x, u)

+CT ∂
∂x f (t, x, u)ẋ(t) + αṠ(t, x)

) (15)

The control input for the new system is:

u̇(t) = u̇eq(t) + udis(t) (16)

with udis(t) = − M sign (σ(t, x))
The effective control to apply to the system (1) is obtained by integration:

u(t) =
∫

u̇eq(t)dt−
∫

udis(t)dt (17)

If we consider a systemwhose output is the sliding function S(t, x) with a relative order equal
to one, the control algorithm, described above, is convergent if there exist positive constants
Γm, ΓM, Φ and s0 such that, in a neighborhood |S(t, x)| ≤ s0, the following conditions are
verified(Salgado (2004)):

0 < Γm ≤ ς(t, x) ≤ ΓM
|θ(t, x)| ≤ Φ

(18)

This approach requires the knowledge of a model of the system, and guaranties an asymptotic
convergence of the sliding function to zero according to a desired dynamic.

2.2 Discrete second order sliding mode approach
Let’s consider the following system :

x(k + 1) = Ax(k) + Bu(k)
y(k) = Hx(k)

(19)

The sliding function relative to this system is taken in this linear form:

S(k) = CT(x(k) − xd(k)) (20)

with xd(k) is the desired state vector and C is the sliding function’s parameters’ vector. A
discrete first order sliding mode control can be given by the following expression (Gao et al.
(1995)):

u(k) = (CTB)−1[ϕ S(k)− CTAx(k) − Msign(S(k))] (21)

In order to develop a second order sliding mode controller, a fictive system whose state
variables are S(k + 1) and S(k) is considered. The new sliding function σ(k) is defined by:

σ(k) = S(k + 1) + βS(k) (22)

with:
S(k + 1) = CT(x(k + 1) − xd(k + 1))

= CT (Ax(k) + Bu(k)− xd(k + 1))
(23)

We note that β is chosen in the interval [0, 1[, in order to ensure the convergence of σ(k).
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By analogy with the case of the first order discrete sliding mode control law (1-DSMC), the
equivalent control that forces the system to evolute on the sliding function is deduced from :

σ(k + 1) = σ(k) = 0 (24)

The equations (22), (23) and (24) give:

S(k + 1) + βS(k) = 0 (25)

and
S(k + 1) = σ(k + 1) − βS(k)

= CT(x(k + 1) − xd(k + 1))
= CT (

Ax(k) + Bueq(k) − xd(k + 1)
) (26)

Then:
ueq(k) = (CTB)−1[−β S(k)− CTAx(k) + CT(xd(k + 1)] (27)

The robustness is ensured by the addition of a discontinuous term (sign of the new sliding
function σ(k)). By analogy with the continuous-time case, we apply to the system (19) the
integral of the discontinuous termwhich will be approximated by a first order transformation.

udis(k) = udis(k− 1) − TeM sign (σ(k)) (28)

The control at the instant k is then (Mihoub et al. (2009b)):

u(k) = ueq(k) + udis(k) (29)

The integration of the discontinuous term of the control allows its use in the case of many
applications where actuators can be damaged by the discontinuity of the 1-DSMC (gates,
motoring...). However, this approach does not ameliorate the robustness of the system during
the reaching phase (Mihoub et al. (2008)). To resolve this problem, the multimodel approach
is exploited in the following paragraph.

3. A multimodel for the 2-DSMC

3.1 Multimodel approach
Instead of exploiting one global model of the system for the equivalent control calculation,
the multimodel approach suggests the use of some partial models that express the process
dynamics. Two problems must be resolved in this case: the construction of the partial models
and the choice of the right one at the right time (Ltaief et al. (2003a;b; 2004); Mihoub et al. (2008;
2009a); Talmoudi et al. (2002a;b; 2003)). If the final model is built by the fusion technique, we
must, of course, compute partial models validities.

3.1.1 Construction of the partial models
Some approaches have been proposed for the systematic determination of a generic models
base. In (Lahmari (1999)), Ksouri L. proposed a models’ base based on the Kharitonov’s
algebric approach. Four extreme models and a medium one can be exploited by the
multimodel strategy. Ben Abdennour et al. (Ltaief et al. (2003a;b; 2004); Talmoudi et al.
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(2002a;b; 2003)) have proposed two contributions for the systematic determination of the
models’base. The first is based on the Chiu’s approach for fuzzy classification (Chiu (1994))
and the second exploites the classification strategy based on the Kohenen’s Neural Network.

3.1.2 The validities computing
The validities estimation can be insured, classically, by the residue approach:

vi(k) =

1− ri(k)
md
∑
c=1

rc(k)

md− 1
, i ∈ [1, md] (30)

ri(k) = |y(k) − yi(k)| (31)

with y(k) is the system’s output, yi(k) is the output of the ith model and md is the models
number.
In order to reduce the perturbation phenomenon due to the inadequate models, we reinforce
the validities as follow:

vren f
i (k) = vi(k)

md

∏
c = 1
i �= c

(
1− e

−
(

rc(k)
g

)2)
(32)

with g is a positive coefficient. The normalized reinforced validities are given by:

vren f
in (k) =

vren f
i (k)

md
∑
c=1

vren f
c (k)

(33)

3.2 The Multimodel 2-DSMC
As already mentioned, the 2-DSMC helps to reduce the chattering phenomenon by the
integration of the discontinuous term which is used to guaranty the robustness of the control
law. Unfortunately, this discontinuous term does not switch during the reaching phase
(because the system has not reached the sliding surface yet). Consequently, during this phase
the robustness is not guaranteed. A solution for this problem was proposed in (Mihoub
et al. (2008; 2009a)) by combining the second order discrete sliding mode control and the
multimodel approach.
The multimodel discrete second order sliding mode control (MM-2-DSMC) structure is given
by the figure 1.
In our case, the partial models can be represented as follows :

Modèle 1 :
{

x(k + 1) = A1x(k) + B1u(k)
y(k) = Hx(k)

...

Modèle md :
{

x(k + 1) = Amdx(k) + Bmdu(k)
y(k) = Hx(k)

(34)
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Fig. 1. The structure of a multimodel discrete second order sliding mode control
(MM-2-DSMC).

where md is the number of the partial models. The control applied to the system is given by
the following relation:

u(k) = v1(k)u1eq(k) + v2(k)u2eq(k) + ...+ vmd(k)umdeq(k) + udis(k); (35)

with

• vi(k) : the validity of the ith local state model,

• uieq(k) : the partial equivalent term of the 2-DSMC calculated using the ith local state
model,

• udis(k) : the discontinuous term of the control.

ueqi(k) = (CTBi)−1
(

α S(k) − CTAix(k) + CT(xd(k + 1)
)

Ai et Bi are the matrixes of the ith partial state model. The discontinuous term is given by the
following expression:

udis(k) = udis(k− 1) − Msign (σ(k))

The multimodel discrete second order sliding mode control (MM-2-DSMC) is, then, given by:

u(k) =
md

∑
i=1

vi(k)ueqi(k) + udis(k) (36)

A stability analysis of this last control law is proposed in the following paragraph.
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3.3 Stability analysis of the MM-2-DSMC
Let’s consider the following non stationary system:

x(k + 1) = Adx(k) + Bdu(k) + Γ(k)
y(k) = Hx(k)

(37)

Γ(k) represents eventual non linearities and external disturbances.

Considering the following notations: Am =
md
∑
i=1

υiAi and Bm =
md
∑
i=1

υiBi,

we obtain the following model:

x(k + 1) = Amx(k) + Bmu(k)
y(k) = Hx(k)

(38)

which is the multimodel approximation of the system (37). This last system can be, then,
written in the following form:

x(k + 1) = (Am + ΔAm) x(k) + (Bm + ΔBm) u(k) + Γ(k)
y(k) = Hx(k)

(39)

such that:
Ad = Am + ΔAm
Bd = Bm + ΔBm

(40)

We note:
Δ(k) = ΔAmx(k) + ΔBmu(k) + Γ(k) (41)

The system (37) can, in this case, be written as follows:

x(k + 1) = Amx(k) + Bmu(k) + Δ(k)
y(k) = Hx(k)

(42)

The control law given by (36) is applied to the system. In the case of the multimodel, the

equivalent term
md

∑
i=1

vi(k)ueqi(k) of (36) is written as follow:

ueq(k) = (CTBm)−1[−β S(k)− CTAmx(k)] (43)

In this case, the sliding function dynamics are given by the following expression:

CTx(k + 1) = S(k + 1) = −βS(k) + CTΔ(k) + (CTBm)udis(k) (44)

The sliding function variation [S(k + 1) − S(k)] is given by the following relation:

S(k + 1) − S(k) = − β(S(k) − S(k− 1) + CT (Δ(k) − Δ(k− 1))

− (CTBm)Msign (S(k) + βS(k− 1)) (45)

In what follows, the quantity (CTBm)M will be noted M∗.
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Which gives:

S(k + 1) + βS(k) = (S(k) + βS(k− 1) + CT (Δ(k)− Δ(k− 1))− M∗sign (S(k) + βS(k− 1))
(46)

The relation (46) can be written:

σ(k + 1) = σ(k) + CT (Δ(k)− Δ(k− 1))− M∗sign (σ(k)) (47)

In discrete time sliding mode control, instead of the sliding mode, a quasi sliding-mode is
considered in the vicinity of the sliding surface, such that |σ(k)| < ε, where σ(k) is the sliding
function and ε is a positive constant called the quasi-sliding-mode band width.
Bartoszewicz, in (Bartoszewicz (1998)), gave the following sufficient and necessary condition
for a system to satisfy a convergent quasi sliding mode:⎧⎨

⎩
σ(k) > ε ⇒ −ε ≤ σ(k + 1) < σ(k)
σ(k) < −ε ⇒ σ(k) < σ(k + 1) ≤ ε

|σ(k)| < ε ⇒ |σ(k + 1)| ≤ ε

(48)

∀k, CT (Δ(k) − Δ(k− 1)) is supposed to be bounded such that:∣∣∣CT (Δ(k) − Δ(k− 1))
∣∣∣ < Δ0 (49)

with Δ0 being a positive constant.

Théorème 0.1. Let’s consider the system (37) to which the MM-2-DSMC given by (36) is applied. If
the discontinuous term amplitude M is chosen such that:

M∗ > Δ0 (50)

where M∗ = (CTBm)M and Δ0 is the external disturbances and system’s parameters’ variation bound
given by (49), then, the MM-2-DSMC of (36) results in a convergent quasi sliding mode.

Proof.
ε is chosen equal to M∗ + Δ0.
To prove the convergence of the proposed control technique, we must, then, check the
following three conditions:

σ(k) > M∗ + Δ0 ⇒ − (M∗ + Δ0) ≤ σ(k + 1) < σ(k) (51)

σ(k) < − (M∗ + Δ0) ⇒ σ(k) < σ(k + 1) ≤ M∗ + Δ0 (52)

|σ(k)| < M∗ + Δ0 ⇒ |σ(k + 1)| ≤ M∗ + Δ0 (53)

1. Let’s begin by the condition (51):

σ(k) > M∗ + Δ0 ⇒ −M∗ − Δ0 < σ(k + 1) < σ(k)

* The inequality
σ(k + 1) < σ(k) (54)
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can be written as follows:

σ(k) + CT(Δ(k) − Δ(k− 1)) − M∗sign (σ(k)) < σ(k) (55)

Knowing that σ(k) > 0, the inequality (55) becomes:

σ(k) + CT(Δ(k) − Δ(k− 1)) − M∗ < σ(k) (56)

By substructing σ(k) from both sides of this last inequality, we obtain:

CT(Δ(k) − Δ(k− 1)) − M∗ < 0 (57)

This last inequality is true because M∗ is chosen such that M∗ > Δ0

* The inequality
− M∗ − Δ0 < σ(k + 1) (58)

can be written as follows:

−M∗ − Δ0 < σ(k) + CT(Δ(k)− Δ(k− 1)) − M∗ (59)

which gives:
− Δ0 − CT(Δ(k)− Δ(k− 1)) < σ(k) (60)

This last inequality is true, knowing that σ(k) > M∗ + Δ0 > 0
and −Δ0 − CT(Δ(k) − Δ(k− 1)) < 0

2. Let’s consider condition (52):

σ(k) < −M∗ − Δ0 ⇒ σ(k) < σ(k + 1) < M∗ + Δ0

By replacing σ(k + 1) by its expression, we obtain:

σ(k) < σ(k) + CT(Δ(k)− Δ(k− 1)) + M∗ < M∗ + Δ0 (61)

* The inequality
σ(k) + CT(Δ(k)− Δ(k− 1)) + M∗ < M∗ + Δ0 (62)

can be written as follows:

σ(k) + CT(Δ(k) − Δ(k− 1)) < Δ0 (63)

which gives:
σ(k) < Δ0 − CT (Δ(k) − Δ(k− 1)) (64)

This last inequality is true because Δ0 − CT (Δ(k)− Δ(k− 1)) > 0 and σ(k) < 0.
* Besides, it is evident that σ(k) < σ(k) + CT(Δ(k)− Δ(k− 1)) + M∗, knowing that:

M∗ > Δ0 > CT(Δ(k) − Δ(k− 1)) (65)

3. Let’s consider condition (53):

|σ(k)| < M∗ + Δ0 ⇒ |σ(k + 1)| < M∗ + Δ0
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* If σ(k) > 0, then, the inequality

|σ(k)| < M∗ + Δ0 (66)

becomes:
0 < σ(k) < M∗ + Δ0 (67)

which gives:

CT(Δ(k)− Δ(k− 1)) − M∗ < σ(k) + CT(Δ(k)− Δ(k− 1)) − M∗
< M∗ + Δ0 + CT(Δ(k) − Δ(k− 1)) − M∗

⇒ −Δ0− M∗ < σ(k) + CT(Δ(k) − Δ(k− 1)) − M∗ < M∗ + Δ0 + Δ0 − M∗
⇒ −Δ0− M∗ < σ(k) + CT(Δ(k)− Δ(k− 1)) − M∗ < Δ0 + Δ0
⇒ −Δ0− M∗ < σ(k) + CT(Δ(k) − Δ(k− 1)) − M∗ < M∗ + Δ0
⇒ −Δ0− M∗ < σ(k + 1) < M∗ + Δ0

Then,
|σ(k + 1)| < M∗ + Δ0 (68)

* If σ(k) < 0, then,
|σ(k)| < M∗ + Δ0 (69)

becomes
− M∗ − Δ0 < σ(k) < 0 (70)

then,

CT(Δ(k) − Δ(k− 1)) + M∗ − M∗ − Δ0 < σ(k) + CT(Δ(k) − Δ(k− 1)) + M∗
< CT(Δ(k) − Δ(k− 1)) + M∗

⇒ −Δ0 − Δ0 < σ(k) + CT(Δ(k) − Δ(k− 1)) + M∗ < M∗ + Δ0
⇒ −Δ0 − M∗ < σ(k) + CT(Δ(k) − Δ(k− 1)) + M∗ < M∗ + Δ0
⇒ −Δ0 − M∗ < σ(k + 1) < M∗ + Δ0

so,
|σ(k + 1)| < M∗ + Δ0 (71)

The verification of the three conditions (51), (52) and (53) proves the existence of the
convergent quasi sliding mode. Therefore, the controller given by (29) is stable.

Note
The bound of Δ(k) can be determined by studying the uncertainties of the different partial
models, how much they cover the different real system’s dynamics and the method used for
the calculation of the validities degrees. The linear matrixes inequalities (LMI) approach can
be used in these conditions.

4. Experimentation on a chemical reactor

4.1 Process description
The semi-batch reactor control provides a very challenging problem for the process control
engineer, due to the high non linearity that characterizes its dynamic behavior. Therefore,
we choose to apply the proposed control laws for temperature control of the chemical reactor
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presented in this section (a photo of the considered reactor is given by figure 2).
This process is used to esterify olive oil. The produced ester is widely used for the

Fig. 2. The esterification reactor used for the experiments.

manufacture of cosmetic products. A specific temperature profile sequence must be followed
in order to guarantee an optimal exploitation of the involved reagents’ quantities. The olive
oil contains, essentially, a mono-unsaturated fatty acid that react with alcohol to give water
and ester as shown by the following reaction equation:

Acid + Alcohol
1�
2

Ester + Water (72)

The final solution contains all the reagents and products in certain proportions. To drive
the reaction equilibrium in the way 1 and, consequently, increase the ester’s proportion, we
should take away water from the solution. This is done by vaporization. The fatty acid (oleic
acid) and the ester ebullition temperatures are approximately 300◦C. The chosen alcohol
(1-butanol) is characterized by an ebullition temperature of 118◦C. Consequently, heating
the reactor to a temperature slightly over 100◦C will result in the vaporization of water only
(which is evacuated through the condenser).
The reactor is heated by circulating a coolant fluid through the reactor jacket. This fluid
is, in turn, heated by three resistors located in the heat exchanger (Figure 3). The reactor
temperature control loop monitors temperature inside the reactor and manipulates the power
delivered to the resistors. It is, also, possible to cool the coolant fluid by circulating cold water
through a coil in the heat exchanger. Cooling is, normally, done when the reaction is over, in
order to accelerate the reach of ambient temperature.
The process can be considered as a single input - single output system. The input is the heating
power P(W). The output is the reactor temperature TR(◦C). The interface between the
process and the calculator is ensured by a data acquisition card of the type RTI 810. The data
acquisition card ensures the conversion of the analog measures of the temperature to digital
values and the conversion of the digital control value to an analog electric signal proportional
the power applied to the heating resistors.
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Fig. 3. Synoptic scheme of the real process.

The control law must carry out the following three stages :

• Bring the reactor’s temperature TR to 105◦C.
• Keep the reactor’s temperature to this value until the reaction is over (no more water

dripping out of the condenser).

• Lower the reactor’s temperature.

We chose, therefore, the set point given by figure 4.
We represent, in figure 5, the static characteristic of the system. The different coordinates are
taken relatively to the three stages of the process. We notice that the system can be considered
as a linear one, though, with some approximations. According to the step responses of the
system, the retained sampling step is equal to 180s. A Pseudo-Random, Binary input Signal
(PRBS) is applied to the real system. An identification of the system structure, based on the
instrumental determinants ratiomethod (BenAbdennour et al. (2001)), led to a discrete second
order linear model.
Due to the nature of the control law to be applied to the reactor, the needed model is a state
model. The considered state variables are the reactor’s temperature TR(◦C) (noted x1(k)),
which is at the same time the system’s output, and the coolant fluid temperature TF(◦C)
(noted x2(k)).
The state variables sequences x1(k) and x2(k) relative to the PRBS excitation input are
measured and used for the parametric identification of the system. The least square method
leads to the following nominal model:
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x(k + 1) =
[
0.6158 0.3600
0.0409 0.9118

]
x(k) +

[
0

0.0033

]
u(k)

y(k) =
[
1 0

]
x(k)

(73)

The application of the multimodel approach and by using the least square method applied on
the input/states sequence relative to each reaction stage leads to three partial models of the
form:

x(k + 1) = Aix(k) + Biu(k)
y(k) = Hx(k) i ∈ [1, 3]

(74)

with for:

• the heating stage:

A1 =
[
0.4712 0.4953
−0.1296 1.0651

]
; B1 =

[
0

0.0036

]
H =

[
1 0

] (75)
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• the reaction stage:

A2 =
[
0.4114 0.5482
−0.0358 0.9787

]
; B2

[
0

0.0034

]
H =

[
1 0

] (76)

• the cooling stage:

A3 =
[
0.6914 0.2877
−0.0386 0.0.9912

]
; B3 =

[
0

0.0032

]
H =

[
1 0

] (77)

The control performance and robustness of the previously mentioned control laws, with
respect to the model-systemmismatch and external disturbance, are illustrated and compared
through the experimental results given in the following paragraph.

4.2 Experimental results
In this paragraph, the performance of the MM-2-DSMC is shown by an experimentation on
the chemical reactor. Firstly, the chattering reduction, obtained by exploiting the second order
sliding mode control, is illustrated by a comparison between the results obtained by the first
order discrete slidingmode control with those realized by the 2-DSMC (Mihoub et al. (2009b)).
The nominal model (73) is used for both the DSMC and the 2-DSMC.
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Fig. 6. Comparison between DSMC and 2-DSMC

We observe that the chattering of the control (u(k)) is remarkably reduced (figure 6.a). A better
set point tracking is, consequently, obtained as shown by figures 6.b and 6.c, which represent,
respectively, the evolution of the reactor temperature and a zooming of this last one in the
neighborhood of 105◦ C. As mentioned above, the reaction takes place essentially during this
phase. If the temperature reactor overshoots 105◦ C, a large amount of alcohol is evaporated
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and wasted and if it does not reach 105◦ C, the reaction kinetics are slowed down. So, the
2-DSMC results in a better efficiency relatively to the first order DSMC.
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Fig. 7. Comparison between 2-DSMC and MM-DSMC

Secondly, the multimodel approach is combined with the 2-DSMC in order to enhance the
reaching phase. The MM-2-DSMC and the 2-DSMC are represented together in figure 7
(Mihoub et al. (2009a)). It can be observed that the sliding function overshoots due to a bad
reaching phase in the case of the 2-DSMC are reduced thanks to the multimodel approach (see
figure 7.a). A better set point tracking is then obtained, as shown by figures 7.b and 7.c. An
amelioration of the efficiency of the chemical reactor is, consequently, obtained.

5. Conclusion

In this work, the problems of the discrete sliding mode control are discussed. A solution
to the chattering problem can be given by the second order sliding mode. To enhance the
reaching phase, the multimodel approach is exploited. A combination of the 2-DSMC and
the multimodel approach is, then, used. A stability analysis of the multimodel second order
discrete sliding mode control is proposed in this work. An experimentation on a chemical
reactor is considered. On the one hand, a comparison between the results obtained by the
first order DSMC and those obtained by the 2-DSMC showed the chattering reduction offered
by the second order approach. On the other hand, a comparison between the results of the
2-DSMC and those of theMM-2-DSMC, illustrated both an enhancement of the reaching phase
and a notable reduction of the chattering phenomenon. A better efficiency of the reactor is,
therefore, obtained.
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1. Introduction 
In nature, there are many processes, which their dynamics depend on more than one 
independent variable (e.g. thermal processes and long transmission lines (Kaczorek, 1985)). 
These processes are called multi-dimensional systems. Two Dimensional (2-D) systems are 
mostly investigated in the literature as a multi-dimensional system. 2-D systems are often 
applied to theoretical aspects like filter design, image processing, and recently, Iterative 
Learning Control methods (see for example Roesser, 1975; Hinamoto, 1993; Whalley, 1990; 
Al-Towaim, 2004; Hladowski et al., 2008). Over the past two decades, the stability of multi-
dimensional systems in various models has been a point of high interest among researchers 
(Anderson et al., 1986; Kar, 2008; Singh, 2008; Bose, 1994; Kar & Singh, 1997; Lu, 1994). Some 
new results on the stability of 2-D systems have been presented – specifically with regard to 
the Lyapunov stability condition which has been developed for RM (Lu, 1994). Then, robust 
stability problem (Wang & Liu, 2003) and optimal guaranteed cost control of the uncertain 
2-D systems (Guan et al., 2001; Du & Xie, 2001; Du et al., 2000 ) came to be the area of 
interest. In addition, an adaptive control method for SISO 2-D systems has been presented 
(Fan & Wen, 2003). However, in many physical systems, the goal of control design is not 
only to satisfy the stability conditions but also to have a system that takes its trajectory in the 
predetermined hyperplane. An interesting approach to stabilize the systems and keep their 
states on the predetermined desired trajectory is the sliding mode control method. Generally 
speaking, SMC is a robust control design, which yields substantial results in invariant 
control systems (Hung et al., 1993). The term invariant means that the system is robust 
against model uncertainties and exogenous disturbances. The behaviour of the underlying 
SMC of systems is indeed divided into two parts. In the first part, which is called reaching 
mode, system states are driven to a predetermined stable switching surface. And in the 
second part, the system states move across or intersect the switching surface while always 
staying there. The latter is called sliding mode. At a glance in the literature, it is understood 
that there are many works in the field of SMC for 1-D continuous and discrete time systems. 
(see Utkin, 1977; Asada & Slotine, 1986; Hung et al., 1993; DeCarlo et al., 1988; Wu and Gao, 
2008; Furuta, 1990; Gao et al., 1995; Wu & Juang, 2008; Lai et al., 2006; Young et al., 1999; 
Furuta & Pan, 2000; Proca et al., 2003; Choa et al., 2007; Li & Wikander, 2004; Hsiao et al., 
2008; Salarieh & Alasty, 2008) Furthermore SMC has been contributed to various control 
methods (see for example Hsiao et al., 2008; Salarieh & Alasty, 2008) and several 
experimental works (Proca et al., 2003). Recently, a SMC design for a 2-D system in RM 
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model has been presented (Wu & Gao, 2008) in which the idea of a 1-D quasi-sliding mode 
(Gao et al., 1995) has been extended for the 2-D system. Though the sliding surfaces design 
problem and the conditions for the existence of an ideal quasi-sliding mode has been solved 
in terms of LMI.  
In this Chapter, using a 2-D Lyapunov function, the conditions ensuring the rest of 
horizontal and vertical system states on the switching surface and also the reaching 
condition for designing the control law are investigated. This function can also help us 
design the proper switching surface. Moreover, it is shown that the designed control law can 
be applied to some classes of 2-D uncertain systems. Simulation results show the efficiency 
of the proposed SMC design. The rest of the Chapter is organized as follows. In Section two, 
Two Dimensional (2-D) systems are described. Section three discusses the design of 
switching surface and the switching control law. In Section four, the proposed control 
design for two numerical examples in the form of 2-D uncertain systems is investigated. 
Conclusions and suggestions are finally presented in Section five. 

2. Two dimensional systems 
As the name suggests, two-dimensional systems represent behaviour of some processes 
which their variables depend on two independent varying parameters. For example, 
transmission lines are the 2-D systems where whose currents and voltages are changed as 
the space and time are varying. Also, dynamic equations governed to the motion of waves 
and temperatures of the heat exchangers are other examples of 2-D systems. It is interesting 
to note that some theoretical issues such as image processing, digital filter design and 
iterative processes control can be also used the 2-D systems properties. 

2.1 Representation of 2-D systems 
Especially, a well-known 2-D discrete systems called Linear Shift-Invariant systems has been 
presented which is described by the following input-output relation 

 , , , ,m n i m j n m n i m j n
m n m n

b y a u− − − −=∑∑ ∑∑  (1) 

Also, this input-output relation can be transformed into frequency-domain using 2-D Z 
transformation. 

 { }
{ }

1 2
1 2

1 2

( , ) ( , )( , )
( , ) ( , )

Z y i j P z zH z z
Z u i j Q z z

= =  (2) 

Similar to the one-dimensional systems, the 2-D systems are commonly represented in the 
state space model but what is makes different is being two independent variables in the 2-D 
systems so that this resulted in several state space models.  
A well-known 2-D state space model was introduced by Roesser, 1975 which is called 
Roesser Model (RM or GR) and described by the following equations 

 

[ ]

1 2 1 2

3 4 3 4

1 2

( 1, ) ( , ) ( , )

( , 1) ( , ) ( , )
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h
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x i j A A x i j B B u i j
A A B Bx i j x i j u i j

x i j
y i j C C

x i j

⎡ ⎤⎡ ⎤ ⎡ ⎤+ ⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

+ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3) 
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where xh(i, j) ∈ Rn and xv(i, j) ∈ Rm are the so called horizontal and vertical state variables 
respectively. Also u(i, j) ∈ Rp is an input and y(i, j) ∈ Rq is an output variable. Moreover, i 
and j represent two independent variables. A1, A2, A3, A4, B1, B2, C1 and C2 are constant 
matrices with proper dimensions. To familiar with other 2-D state space models (Kaczorek, 
1985).  

2.2 Stability of Rosser Model 
One of the important topics in the 2-D systems is stability problem. Similar to 1-D systems, 
the stability of 2-D systems can be represent in two kinds, BIBO and Internally stability. 
First, a BIBO stability condition for RM is stated. 
Theorem 1: A zero inputs 2-D system in RM (3) is BIBO stable if and only if one of the 
following conditions is satisfied 
1. I. A1 is stable,   II. [ ] 1

4 3 1 1 2nA A I z A A−+ −  is stable for 1 1z = . 
2. I. A2 is stable,   II. [ ] 1

1 2 2 4 3mA A I z A A−+ −  is stable for 2 1z = . 
Note that, in the discrete systems, a matrix is stable if all whose eigenvalues are in the unite 
circle. Thus, from Theorem 1, it can be easily shown that a 2-D system in RM is unstable if 
A1 or A2 is not stable. 
Similar to 1-D case, the Lyapunov stability for 2-D systems has been developed such that we 
represented in the following theorem. 
Theorem 2: Zero inputs 2-D system (3) is asymptotically stable if there exist two positive 
definite matrices P1∈ Rn and P2∈ Rm such that 

 ATPA - P = - Q (4) 

where Q is a positive matrix and 

 1 1 2

2 3 4

0
,

0
P A A

P A
P A A

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (5) 

Remark 1: Note that the 2D system (3) is asymptotically stable if the state vector norms 
( , )hx i j  and ( , )vx i j converge to zero when i+j→∞. 

Remark 2: The equality (3) is commonly called 2-D Lyapunov equation. As stated in the 
theorem 2, the condition for stability of 2-D systems in RM model is only sufficient not 
necessary and the Lyapunov matrix, P, is a block diagonal while in the 1-D case, the stability 
conditions is necessary and sufficient and the Lyapunov matrix is a full matrix. 
However, it is worthy to know that the Lyapunov equation (3) can be used to define the 2-D 
Lyapunov function as shown below. 

 1
00

2

0
( , )

0
T P

V i j X X
P

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (6) 

where ( , ) ( , )
Th vX x i j x i j⎡ ⎤= ⎣ ⎦ . Regarding (5), define delayed 2-D Lyapunov function as 

follows 

 1
11 11 11

2

0
( , )

0
T P

V i j X X
P

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (7) 
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where ( 1, ) ( , 1)
Th vX x i j x i j⎡ ⎤= + +⎣ ⎦ . Now, we can state following fact. 

Theorem 3: 2-D system (3) is asymptotically stable if there are the Lyapunov function, (6) 
and the delayed function (7) such that 

 11 00( , ) ( , ) ( , ) 0V i j V i j V i jΔ = − <  (8) 

As a result, the Theorem 3 can be used to design a 2-D control system. 

3. Sliding mode control of 2-D systems 
In this section, we review some prominence of the 1-D sliding mode control and then 
present the 2-D sliding mode control for RM. 

3.1 One dimensional (1-D) Sliding Mode Control 
Generally speaking, Sliding Mode Control (SMC) method is a robust control policy in which 
the control input is designed based on the reaching and remaining on the predetermined 
state trajectory. This state trajectory is commonly called switching surface (or manifold). 
Usually, first the switching surface is determined as a function of the state and/or time, and  
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Fig. 1. State trajectory for some different initial conditions 

then the control action is designed to reach and remain the state trajectory on the switching 
surface and move to the origin. Therefore, it can be appreciated that the switching surface 
should be contained the origin and designed such that the system is stabile when remaining 
on it. Three main advantages of the SMC method are low sensitivity to the uncertainty (high 
robustness), dividing the system trajectory in two sections with low degree and also easily 
in implementation and applicability to various systems. 

 

s(k) = 0

s(k) = 0
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To make easier understanding the 1-D SMC, let consider a simple example in which a 
discrete time system is given as follows 

 1 2

1 1 2

( 1) ( )
( 1) ( ) ( ) ( )

x k x k
x k x k x k u k

+ =⎧
⎨ + = + +⎩

 (9) 

 

Consider that the switching surface is  

 1 2( ) ( ) 2 ( )s k x k x k= −  (10) 
 

also let us the control input is given as 
 

 ( ) ( , ) 0.6 ( )eu k u x k s k= +  (11) 
 

where 1 2( , ) ( ) 0.5 ( ) 0.5 ( )eu x k x k x k s k= − − − . It is clear that the control input is ue(x, k) when 
the system remain on the surface (in other word when s(k) = 0). Fig. 1 illustrates the state 
trajectories of the system for some different initial conditions such that they converge to the 
surface and move to the origin in the vicinity of it. As it is shown in Fig. 1, the state 
trajectories switch around the surface when they reach the vicinity of it. The main reason of 
this phenomenon comes from the fact that the system dynamic equation is not exactly 
matched to the switching surface (Gao, 1995). In fact, the control policy in the SMC method 
is to reduce the error of the state trajectory to the switching surface using the switching 
surface feedback control. It is worthy to note that in the SMC method, the system trajectory 
is divided to two sections that are called reaching phase and sliding phase. Thus, the control 
input design is commonly performed in two steps, which named equivalent control law and 
switching are control law design. We want to use this strategy to present 2-D SMC design.  
 

3.2 Two dimensional (2-D) sliding mode control 
Consider the 2-D system in RM model as stated in (3).  
In this chapter it is assumed that the 2-D system (3) starts from the boundary conditions that 
are satisfied following condition 
 

 
2 2

0
(0, ) ( ,0)h v

k
x k x k

∞

=
+ < ∞∑  (12) 

 

where xh(0, k) and xv(k, 0) are horizontal and vertical boundary conditions. Before 
introducing 2-D SMC method, some definitions are represented. 
Definition 1: The horizontal and vertical linear switching surfaces denoted by sh(i, j) and 
sv(i, j), are defined as the linear combination of the horizontal and vertical state of the 2-D 
system respectively as shown below  
 

 
( , ) ( , )

( , ) ( , )

h h h

v v v

s i j C x i j

s i j C x i j

=

=
 (13) 

 

where Ch and Cv are the proper constant matrices with proper dimensions. 
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Definition 2: Consider the 2-D system (1) starts from (i, j) = (i0, j0). The boundary conditions 
can be out of or on the switching surface. So, if the system state trajectory moves toward the 
switching surface (11), this case is called reaching phase (or mode). After this, if it intersects 
switching surface at (i, j) = (i1, j1) and remains there for all (i, j) > (i1, j1) then this is called 
sliding motion or sliding phase for 2-D systems in RM. 
As it is mentioned previously, a common approach to design SMC method contains two 
steps. First step is determination of the proper switching surface and second step is to 
design a control action to reach the state trajectory the surface and after it move toward the 
origin.  

3.3 Two dimensional switching surface design 
In order to design the 2-D switching surface, we want to extend a well-known method in  
1-D case to 2-D case that is equivalent control approach. The equivalent control approach is 
based on the fact that the system state equation should be stable when it stays on the 
surface. In this method two points have to be considered, one is to find condition that 
assures staying on the surface and other is related to the stability of the system when is laid 
on the surface. It can be shown that two problems can be solved by 2-D Lyapunov stability 
presented in the theorem 3. For this purpose, let us define following Lyapunov functions 
 

 
2 2

00

2 2
11

1 1( , ) [ ( , )] [ ( , )]
2 2
1 1( , ) [ ( 1, )] [ ( , 1)]
2 2

h v
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 (14) 

 

According to theorem 3, the stability condition in the sense of reaching to the switching 
surface is occurred when the difference of two functions V11 and V00 is negative. 
Consequently, the condition that presents staying on the switching surface can be 
 

 11 00( , ) ( , ) 0V i j V i j− =  (15) 
 

Therefore, it can be concluded that 

 ( 1, ) ( , )

( , 1) ( , )

h h

v v
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s i j s i j

+ =

+ =
 (16) 

 

Let define following functions as 

 00 11
( , ) ( 1, )

( , ) ,   ( , )
( , ) ( , 1)

h h

v v

s i j s i j
S i j S i j

s i j s i j

⎡ ⎤ ⎡ ⎤+
= =⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (17) 

 

Thus, equality (17) can be written as 

 11 00( , ) ( , )S i j S i j=  (18) 
 

From the equations (18) we can derive the control input equivalent to the case that 2-D 
system (3) stay on the switching surfaces as shown below 
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11

1 2 1 2

3 4 3 4

00

0 ( 1, )
( , )

0 ( , 1)

( , )0 ( , ) 0

0 ( , ) 0 ( , )

( , )

h h

v v

hh h h
eq

v v v v
eq

C x i j
S i j

C x i j

u i jC A A x i j C B B
A A B BC x i j C u i j

S i j

⎡ ⎤ ⎡ ⎤+
= ⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=

 (19) 

So we have 

 
( , ) ( , )

( , )
( , )( , )

h h
eq h v

vv
eq

u i j x i j
F C C

x i ju i j

⎡ ⎤ ⎡ ⎤
⎢ ⎥ = − ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (20) 

Where 

 
1

1 2 1 2

3 4 3 4

( )
( , )

( )

h h h h
h v

v v v v

C B C B C A I C A
F C C

C B C B C A C A I

−
⎡ ⎤ ⎡ ⎤−

= ⎢ ⎥ ⎢ ⎥
−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (21) 

and it is assumed that 1 2

3 4

h h

v v

C B C B

C B C B

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 is invertible. The control input (20) is called equivalent 

control law. Now, we should also guarantee the stability of the system when is laid on the 
surfaces. To perform this, it is sufficient that the following augmented system is stable. 

 

1 2 1 2

3 4 3 4

( , )( 1, ) ( , )

( , 1) ( , ) ( , )

( , )
0

( , )

hh h
eq

v v v
eq

h

v

u i jx i j A A x i j B B
A A B Bx i j x i j u i j

s i j

s i j

⎡ ⎤⎡ ⎤ ⎡ ⎤+ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

=⎢ ⎥
⎢ ⎥⎣ ⎦

 (22) 

Aforementioned state updating equations (22) represents the 2-D system in the case that it is 
laid on the surface. By replacing the equivalent control law (20) we have 

 

1 2 1 2

3 4 3 4

( 1, ) ( , )
( , )

( , 1) ( , )

( , )
0

( , )

h h
h v

v v

h

v

x i j A A B B x i j
F C C

A A B Bx i j x i j

s i j

s i j

⎡ ⎤ ⎡ ⎤⎛ ⎞+ ⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦

 (23) 

ith respect to the stability of the system (8), the switching surfaces can be designed. 

3.4 Two dimensional control law design 
After designing the proper horizontal and vertical switching surfaces, it has to be shown 
that the 2-D system in RM (3) with any boundary conditions, will move toward the surfaces 
and reach and also sliding on them toward the origin. This purpose can be interpreted as a 
regulating and/or tracking control strategies. To perform this purpose, consider that the 
control inputs are assigned as follows 
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( , )( , ) ( , )

( , ) ( , ) ( , )

hh h
eqs

v v v
s eq

u i ju i j u i j

u i j u i j u i j

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (24) 

where ( , )h
equ i j and ( , )v

equ i j were designed as (20). ( , )h
su i j  and ( , )v

su i j  which are called 
switching control laws, has to be designed such that the control inputs ensure the reaching 
condition. In this method, it is shown that the duties of the switching control laws are to 
move the state trajectories toward the surfaces. Therefore, we will first determine the 
condition that guarantees the reaching phase. It is interesting to note that the reaching 
condition is also obtained in the sense of 2-D Lyapunov functions (6) and (7) using theorem 
3 such that if we have 

 2 2
11 00( , ) ( , )S i j S i j<  (25) 

Then the state trajectories move to the surfaces. Now let us define 11 00( , ) ( , )S S i j S i jΔ = − and 
applying the equivalent control laws (20) we have 

 

1 2 1 2

3 4 3 4

1 2

3 4

( ) ( , )

( ) ( , )

( , ) ( , )

( , ) ( , )

h h h h h

v v v v v

h h h h
s

v v v v
s

C A C A C A I C A x i j
S

C A C A C A C A I x i j

C B C B u i j s i j

C B C B u i j s i j

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
⎜ ⎟Δ = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

⎡ ⎤ ⎡ ⎤⎡ ⎤
+ −⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (26) 

So, this results in 

 1 2

3 4

( , )

( , )

h h h
s

v v v
s

C B C B u i j
S

C B C B u i j

⎡ ⎤⎡ ⎤
Δ = ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 (27) 

Theorem 4: For the 2-D system in RM (3) if the switching control law is designed as 

 
( , ) ( , )

( , ) ( , )

h h h
s
v v v
s

u i j k s i j

u i j k s i j

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (28) 

where kh and kv are the positive constant numbers and also 

 1 2 1 2 1 2

3 4 3 4 3 4

2 0
Th h h h h h h h

v v v v v v v v

C B C B k C B C B k C B C B

C B C B C B k C B C B k C B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ <⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (29) 

then the reaching condition (25) is satisfied. 
Proof:  
As it is mentioned, to ensure the reaching phase it is sufficient that the (25) is satisfied. It is 
well-known we can write (25) as below 

 ( )2 2
00 00

1 1
2 2

S S S+ Δ <  (30) 

By replacing (20) into (30) we have 
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2
1 2

00
3 4

1 22
00 00

3 4
2

1 2 2
00

3 4

( , )1
2 ( , )

( , )1    
2 ( , )

( , )1 1    
2 2( , )

h h h
s

v v v
s

h h h
sT

v v v
s

h h h
s

v v v
s

C B C B u i j
S

C B C B u i j

C B C B u i j
S S

C B C B u i j

C B C B u i j
S

C B C B u i j

⎛ ⎞⎡ ⎤⎡ ⎤
⎜ ⎟+ =⎢ ⎥⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

⎡ ⎤⎡ ⎤
= + ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞⎡ ⎤⎡ ⎤
⎜ ⎟+ <⎢ ⎥⎢ ⎥
⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 (31) 

 

Therefore,  

 
2

1 2 1 2
00

3 4 3 4

( , ) ( , )1
2( , ) ( , )

h h h h h h
s sT

v v v vv v
s s

C B C B u i j C B C B u i j
S

C B C B C B C Bu i j u i j

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎜ ⎟< −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

 (32) 

 

Now with respect to the switching control laws (28) we can write 

 1 2 1 2 1 2
00 00 00 00

3 4 3 4 3 4

1 0
2

Th h h h h h h h h
T T

v v v v v v v v v

k C B C B k C B C B k C B C B
S S S S

C B k C B C B k C B C B k C B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ <⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (33) 

 

This completes the proof. 

3.5 Robust control design 
In this section, assume that the 2-D system in RM (3) is not given exactly and we have 

 
( 1, ) ( , ) ( , )

( ) ( )
( , 1) ( , ) ( , )

h h h

v v v

x i j x i j u i j
A A B B

x i j x i j u i j

⎡ ⎤⎡ ⎤ ⎡ ⎤+
= + Δ + + Δ ⎢ ⎥⎢ ⎥ ⎢ ⎥

+ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (34) 

 

where AΔ  and BΔ are denoted as the uncertainties in the system. Assume that 

 
A pA
B pB

Δ =
Δ =

 (35) 

where p is an unknown constant number and there exists a known positive real number, α , 
such that 

 p α<  (36) 
 

In this case we present following theorem. 
Theorem 5: The state trajectories of the uncertain 2-D system (34) is converged to the 
switching surfaces (13) if 

 1 2 1 2 1 22

3 4 3 4 3 4

0
Th h h h h h h h

v v v v v v v v

C B C B k C B C B k C B C B

C B C B C B k C B C B k C B
α α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ <⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (37) 



 Sliding Mode Control 

 

500 

0
10

20
30

0

10

20

30
-0.5

0

0.5

1

1.5

j axis

xh1

i axis

 

0
10

20
30

0

10

20

30
-1.5

-1

-0.5

0

0.5

1

j axis

xh2

i axis  

0
10

20
30

0

10

20

30
-3

-2

-1

0

1

j axis

xh3

i axis

 

 
Fig. 2. The horizontal states of the system 
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Fig. 3. The vertical states of the system 
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4. Numerical examples 
4.1 As a first numerical example, consider a discretization of the partial differential equation 
of darboux equation as  a 2-D system in RM (Wu & Gao, 2008) that is 

 1 2 1

3 4 2

( 1, ) ( , ) ( , )

( , 1) ( , ) ( , )

h h h

v v v

x i j A A x i j B u i j
A A Bx i j x i j u i j

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (38) 

Where 3 3( , ) , ( , ) , ( , ) , ( , )v h h vu i j R u i j R x i j R x i j R∈ ∈ ∈ ∈  and  

 

1 2

3 4

0.65 0.25 0.32 0.25 0.30 0.20
0.20 0.75 0.15 , 0.30 0.15 0.24

0.26 0.34 0.80 0.15 0.36 0.48
0.45 0.20 0.15 0.60 0.25 0.18
0.25 0.30 0.20 , 0.75 0.40 0.14
0.20 0.65 0.25 0.20 0.15 0.37

A A

A A

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

−⎡ ⎤
⎢ ⎥= − = − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (39) 

And 

 1 2

0 0
0 , 0
2 3

B B
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (41) 

As discussed in previous section, the switching surfaces are designed as the system equation 
in (22) is stable that is 

 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

13 8 1 8 1 1 3 1
20 25 4 25 4 5 10 5

1 3 3 3 3 6 3 6
( 1, ) ( , )5 20 4 20 10 25 20 25

9 3 1 3 3 9 1 9( , 1)
20 20 5 20 5 50 4 50

1 1 3 1 3 7 2 7
4 5 10 5 4 50 5 50

h h
r r
v v
r r

c c c c

c c c cx i j x i j

x i j xc c c c

c c c c

⎡ ⎤− − − − − −⎢ ⎥
⎢ ⎥
⎢ ⎥− + + − − −⎡ ⎤+ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
+⎢ ⎥ ⎢ ⎥⎣ ⎦ + + − −

⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − − − −
⎣ ⎦

( , )i j

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (42) 

Where 2 2( , ) , ( , )h v
r rx i j R x i j R∈ ∈  are reduced state in and  

 1 2 1 2
1 2 3 4

3 3 3 3
, ,

h h v v

h h v v
c c c cc c c c
c c c c

= = = =  (43) 

It is easily shown that if we choose 

 
[ ]

[ ]

40.3735 99.1097 75.3160

43.6978 1.3936 290.8205

h

v

C

C

= −

= −

 (44) 
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Then the reduced system (42) is stable. Therefore, the equivalent control laws are  

 ( ) 1( , ) ( , )

( , ) ( , )

h h
eq
v v
eq

u i j x i j
CB CA

u i j x i j
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ = − ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (45) 

Where 1 2 1

3 4 2

0 0
, ,

0 0

h

v

A A B C
A B C

A A B C

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. Also, according to theorem 5 we can 

obtain the switching laws that are 

 
( , ) 0.0001 0 ( , )

0 0.0004( , ) ( , )

h h
s
v v
s

u i j s i j

u i j s i j

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (46) 

The simulation results are shown in Figs. 2 – 5. 
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Fig. 4. The horizontal and vertical switching surfaces 
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Fig. 5. The horizontal and vertical control inputs 

4.2 Let a 2-D uncertain system in RM be given as follows 

 

( )
( )
( )
( )

( )

( )
( )
( )
( )

( ) ( )
( )

1 1

2 2

1 1

2 2

1, ,

1, , ,

, 1 , ,

, 1 ,

h h

h h h

v v v

v v

x i j x i j

x i j x i j u i j

x i j x i j u i j

x i j x i j

⎡ ⎤ ⎡ ⎤+
⎢ ⎥ ⎢ ⎥

⎡ ⎤+⎢ ⎥ ⎢ ⎥
= Α + ΔΑ + Β + ΔΒ ⎢ ⎥⎢ ⎥ ⎢ ⎥

+ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

 (47) 

Where 

0.7020 0.7846 1.1666 0.4806 1.2632 0.3524
1.6573 0.7190 1.7257 1.7637 1.0438 0.2503

  
1.0272 0.6165 1.6654 1.1104 0.5016 0.8912

0.1917 0.4467 1.0959 0.0200 0.1348 0.0587

A B

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − − − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥

− − −⎣ ⎦ ⎣ ⎦

 

Suppose α = 0.5. For this system, the switching surface is chosen as 
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 ( )
( )

( )
( )
( )
( )

1

2

1

2

,

, ,

, ,

,

h

h h

v v

v

x i j

s i j x i j
c

s i j x i j

x i j

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

 (48) 

where 

1 2

1 2

0 0

0 0

h h

v v

c c
C

c c

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 

The constant parameters 1
hc , 2

hc , 1
vc  and 2

vc  have to be selected such that the augmented 
system (22) be stable. It can be easily shown that by choosing C as 

 1 2

1 2

0 0 0.3608 0.2825 0 0
0 0 1.3173 0.21400 0

h h

v v

c c
C

c c

⎡ ⎤ − −⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦
 (49) 

the augmented system (19) is stable such that 

 

( )
( )
( )
( )

( )
( )
( )
( )

1 1

2 2

1 1

2 2

1, ,1.6344 1.1038 1.2997 0.9881
1, ,0.8101 0.4095 1.6595 1.2617

0.0144 0.0956 0.8075 0.2061, 1 ,
0.0887 0.5883 1.1849 0.2687, 1 ,

h h

h v

v v

v v

x i j x i j

x i j x i j

x i j x i j

x i j x i j

⎡ ⎤ ⎡ ⎤+ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥+⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥+⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦+⎣ ⎦ ⎣ ⎦

( , ) 0
0( , )

h

v

s i j

s i j

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦

 (50) 

By simplifying (50), we have a reduced stable 2-D system as 

 1 1

1 1

( 1, ) 0.2248 4.7821 ( , )
0.1076 0.4612( , 1) ( , )

h h

v v

x i j x i j

x i j x i j

⎡ ⎤ ⎡ ⎤+ −⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥− −+⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (51) 

So the control action that has been described in previous section is 

 ( )
( )

( )
( )
( )
( )

1

2

1

2

,

, , ( , )1
2, , ( , )

,

h

h h h

v v v

v

x i j

u i j x i j s i j
F

u i j x i j s i j
x i j

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥
= −⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥
⎣ ⎦

 (52) 

by selecting k = 0.5  the condition in (37) is satisfied such that 

 ( )2 0.3636 0.258
1 1

0.2580 0.768
TD Dα

− −⎡ ⎤
+ − = ⎢ ⎥− −⎣ ⎦

 (53) 

It is clear that the above matrix is a negative definite matrix. Simulation results of this 
example have been illustrated in Fig 6 - 8. 
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Fig. 6. a) Horizontal sliding surface sh (i, j)  b) Vertical sliding surface  sv (i, j) 
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Fig. 7. System states   a) 1 ( , )hx i j , b) 2 ( , )hx i j ,  c) 1 ( , )vx i j  and  d) 2 ( , )vx i j  
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Fig. 8. a) Horizontal input control uh (i, j), b) Vertical input control uv (i, j) 

5. Conclusion 
In this Chapter, an extension of 1-D SMC design to the 2-D system in Roesser model has 
been proposed. Using a 2-D Lyapunov function, we first designed a linear switching 
surface, and then a feedback control law that satisfies reaching condition was obtained. This 
method can also be applied to 2-D uncertain systems with matching uncertainty. 
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1. Introduction 
Variable structure control with sliding mode, which is commonly known as sliding mode 
control (SMC), is a nonlinear control strategy that is well known for its robust characteristics 
(Utkin, 1977). The main feature of SMC is that it can switch the control law very fast to drive 
the system states from any initial state onto a user-specified sliding surface, and to maintain 
the states on the surface for all subsequent time (Utkin, 1977), (Phuah et al., 2005 a). 
The conventional SMC has two disadvantages (Ertugrul & Kaynak, 2000), (Slotine & Sastry, 
1983), which are the chattering phenomenon (Slotine & Sastry, 1983), (Young et al., 1999) 
and the difficulty in calculating the equivalent control law of SMC that requires a thorough 
knowledge of the parameters and dynamics of the nominal controlled plant (Ertugrul & 
Kaynak, 2000), (Slotine & Sastry, 1983), (Hussain & Ho, 2004). 
Many methods of SMC using neural networks (NN) have been proposed (Phuah et al., 2005 
a), (Ertugrul & Kaynak, 2000), (Hussain & Ho, 2004), (Phuah et al., 2005 b), (Yasser et al., 
2007), (Topalov et al., 2007).  
In this paper, sliding mode controls using NN are proposed to deal with the problem of 
eliminating the chattering effect and the difficulty in calculating the equivalent control law 
of SMC that requires a thorough knowledge of the parameters and dynamics of the nominal 
controlled plant. The first method of this method applies a method using a simplified form 
of the distance function proposed in (Phuah et al., 2005 a), (Phuah et al., 2005 b). 
Furthermore, the simplified distance function of our method uses a sliding surface in the 
space of the output error and its derivations, as proposed in (Yasser et al., 2006 a), (Yasser et 
al., 2006 c), instead of the space of the states error to construct a corrective control input. 
Thus, no observer is required in the proposed method. Moreover, we also propose the 
application of an NN to construct the equivalent control input of SMC. The weights of the 
NN are adjusted using a backpropagation algorithm as in (Yasser et al., 2006 b). Hence, a 
thorough knowledge of the parameters and dynamics of the nominal controlled plant is not 
required for calculating the equivalent control law. Finally, a stability analysis is carried out, 
and the effectiveness of this first control method is confirmed through computer 
simulations. This first method has been previously discussed in (Yasser et al., 2007). 
The second method of this paper applies an NN to produce the gain of the corrective control 
of SMC. Furthermore, the output of the switching function the corrective control of SMC is 
applied for the learning and training of the NN. There is no equivalent control of SMC is 
used in this second method. As in the first method, this second method applies a method 
using a sliding surface in the space of the output error and its derivations, as proposed in 
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(Yasser et al., 2006 a), (Yasser et al., 2006 c). The weights of the NN are adjusted using a 
sliding mode backpropagation algorithm, that is a backpropagation algorithm using the 
switching function of SMC for its plant sensitivity. Thus, this second method does not use 
the equivalent control law of SMC, instead it uses a variable corrective control gain 
produced by the NN for the SMC. Hence, a thorough knowledge of the parameters and 
dynamics of the nominal controlled plant is not required for calculating the control law. 
Finally, a stability analysis is carried out, and the effectiveness of this first control method is 
confirmed through computer simulations. 

2. Sliding mode control 
In designing a standard sliding mode controller, first we are required to construct a sliding 
surface that represents a desired system dynamics, and then to develop a switching control 
law such that a sliding mode exists on every point of the sliding surface. Any states outside 
the surface are driven to reach the surface in a finite time. 
Let us consider an SISO nonlinear plant with BIBO described as 

 
( ) ( ( )) ( )
( ) ( ) ( ( ))

p p p p

p p p p

t t B u t
y t C t h t

= +

= +

x f x
x x

 (1) 

where ( )p tx  is an pn th-order plant state vector, ( )pu t  is the control input, ( )py t  is a plant 
output, ( )⋅f  is a nonlinear vector function pnR∈ , ( )h ⋅  is a scalar nonlinear function, and pB  
and pC  are matrices with appropriate dimensions. We assume that the system in (1) is 
controllable and observable. 
The control objective is to determine a control law ( )pu t  such that the state vector ( )p tx  

tracks a given bounded desired state vector ˆ ( ) pn
p t R∈x . Therefore, the states error can be 

obtained as 

 
( 1)

ˆ( ) ( ) ( )

( ), ( ), , ( )

p

p

p p p

x p p

Tn
x x x

t t t

e t e t e t−

= −

⎡ ⎤= ⎢ ⎥⎣ ⎦

e x x
. (2) 

Then the sliding surface in the space of the state error can be obtained as 

 ( ) ( )
p p p

T
x x xS t t= c e  (3) 

where 1 2, , ,
p p p p p

T
x x x x nc c c⎡ ⎤= ⎣ ⎦c is a slope of sliding surface. Generally 

pxc  is chosen to 

force the state error converge to zero when the state is on the sliding surface. 
Meanwhile, the process of SMC can be divided into two phases: the approaching phase with 

( ) 0
pxS t ≠  and the sliding phase with ( ) 0

pxS t = . Therefore, two types of control law: an 
equivalent control and a corrective control can be derived separately corresponding to those 
two phases. 
In the sliding phase, we have ( ) 0

pxS t =  and ( ) 0
pxS t = , then the equivalent control term 

( )equ t  will force the system dynamics to stay on sliding surface. The equivalent control 
( )equ t  can be obtained as 
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1

ˆ( ) ( ) ( ( ))
p p p

T T T
eq x p x p x pu t B t t

−
⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦c c x c f x . (4) 

In the approaching phase, where ( ) 0S t ≠ , a corrective control term ( )cu t  will force the state 
error outside the surface to reach the surface. The corrective control term ( )cu t  is defined as 

 ( )( ) ( )
pc s xu t k sign S t=  (5) 

where sk  is a positive gain constant, and ( )( )
pxsign S t  is a sign function defined as 

 ( )
1, if ( ) 0

( ) 0, if ( ) 0

1, if ( ) 0

p

p p

p

x

x x

x

S t

sign S t S t

S t

⎧+ >
⎪⎪= =⎨
⎪
− <⎪⎩

. (6) 

Then, the control law of SMC will be expressed as 

 ( ) ( ) ( )p eq cu t u t u t= + . (7) 

3. Sliding mode control using Neural Networks and a simplified distance 
function 
The first method of this method applies a method using a simplified form of the distance 
function proposed in (Phuah et al., 2005 a), (Phuah et al., 2005 b). An NN is applied to 
construct the equivalent control input of SMC. The weights of the NN are adjusted using a 
backpropagation algorithm as in (Yasser et al., 2006 b). 

3.1 Chattering elimination using a simplified distance function 
Based on the concept of point to hyperplane distance, an alternative control method to 
calculate the corrective control term ( )cu t has been proposed in (Phuah et al., 2005 a), (Phuah 
et al., 2005 b) to suppress the chattering phenomenon which is caused by high frequency 
oscillations exhibited by the corrective control law ( )cu t in (5). This method uses a distance 
function ( )h t  to calculate the distance between the trajectory of the state error and the 
sliding surface to generate the corrective control law. The distance function ( )h t  is defined 
as (Phuah et al., 2005 a), (Phuah et al., 2005)  

 
1

( ) ( )
p px xh t S t
−

= c  (8) 

where ⋅  is the usual Euclidean norm in pnR . The corrective control law is defined as 
(Phuah et al., 2005 a), (Phuah et al., 2005)  

 ( ) ( )cu t kh t=  (9) 

where k  is a positive constant. 
To construct the corrective control law, the distance function (8) can be simplified to 
minimize the calculation process, and modified by applying the sliding surface in the space 
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of the output error and its derivations, proposed in (Yasser et al., 2006 a), (Yasser et al., 
2006 c), instead of the state error. For that, first, we consider a linear reference model to 
which the plant output required to follow in the form 

 
( ) ( ) ( )
( ) ( )

m m m m

m m m

t A t B u t
y t C t

= +
=

mx x
x

 (10) 

where ( )m tx  is an mn th-order reference model state vector, ( )mu t  is a reference model 
input, ( )my t  is a reference model output, mA , mC  are matrices with appropriate 
dimensions, and mB is a scalar value. The reference model can be independent of the 
controlled plant, and it is permissible to assume m pn n . Then, we define the output error 

( )
pye t  as 

 ( ) ( ) ( )
py m pe t y t y t= −  (11) 

Thus, the simplified distance function ( )simh t can be described as 

 ( ) ( )
psim sim yh t k S t=  (12) 

where simk  is a positive constant, and ( )
pyS t  is a sliding surface in the space of the output 

error and its derivations described as (Yasser et al., 2006 a), (Yasser et al., 2006 c)  

 
( 1)

1 2

( ) ( )

, , , ( ), ( ), , ( )

p p p

s
p p p s p p p

T
y y y

T
n

y y y n y y y

S t t

c c c e t e t e t−

=

⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦

c e
 (13) 

where 2sn > .  
Then, by replacing ( )h t  in (9) with ( )simh t  from (12), a new corrective control law can be 
defined as 

 ( ) ( ) ( )
p pc sim y yu t kh t k S t= =  (14) 

where 
py simk k k= ⋅  is a positive constant. 

3.2 Neural Networks for equivalent control 
To avoid the requirement of the thorough knowledge of the parameters and dynamics of the 
nominal plant (1), we use a feedforward NN, which consists of an input layer, a hidden 
layer, and an output layer as in (Yasser et al., 2006 b), to construct the equivalent control 
input ( )equ t  of the SMC in (7). The equivalent control input ( )equ t  is described as 

 
( )

( ) ( )

( )
eq NN

ZOH NN

u t u t

f u k

α

α

=

=
 (15) 

where α  is a positive constant, ( )NNu t  is a continuous-time output of the NN, ( )NNu k  is a 
discrete-time output of the NN, and ( )ZOHf ⋅  is a zero-order hold function. 
As in (Yasser et al., 2006 b), we implement a sampler in front of the NN with an appropriate 
sampling period to obtain the discrete-time input of the NN, and a zero-order hold is 



Sliding Mode Control Using Neural Networks 

 

513 

implemented to transform the discrete-time output ( )NNu k  of the NN back to the 
continuous-time output ( )NNu t  of the NN. 
The input ( )i k  of the NN is given as 

 ( ) ( 1), , ( )
p py yi k e k e k n⎡ ⎤= − −⎣ ⎦  (16) 

where ( )
pye k  is the discrete-time form of ( )

pye t  in (11). And the dynamics of the NN are 

given as (Yasser et al., 2006 b) 

 ( ) ( ) ( )q i iq
i

h k i k m k=∑  (17) 

 
1

( ) ( )
( ( )) ( )

NN

q qj
i

u k o k
S h k m k

=

=∑  (18) 

where ( )ii k  is the input to the i -th neuron in the input layer ( 1, , ii n= ), ( )qh k  is the input 
to the q -th neuron in the hidden layer ( 1, , qq n= ), ( )o k  is the input to the single neuron in 
the output layer, in  and qn  are the number of neurons in the input layer and the hidden 
layer, respectively, ( )iqm k  are the weights between the input layer and the hidden layer, 

( )qjm k  are the weights between the hidden layer and the output layer, and 1( )S ⋅  is a 
sigmoid function. The sigmoid function is chosen as 

 1
2( ) 1

1 exp( )
S X

Xμ
= −

+ −
 (19) 

where 0μ > .  
The objective of the NN training is to minimize the error function ( )

pyE k  described as 

 21 1( ) ( ) ( ) ( )
2 2

j

p p

n

y y m p
j

E k e k y k y k⎡ ⎤= = −⎣ ⎦∑  (20) 

where ( )
pye k  is the discrete-time form of ( )

pye t  in (11). The NN training is done by adapting 

( )iqm k  and ( )qjm k  using the method in (Yasser et al., 2006 b) as follows 

 

1

( )( )
( )

( ) ( ) ( ( ))

qj
qj

m p plant q

E km k c
m k

c y k y k J S h k

∂
Δ = − ⋅

∂

⎡ ⎤= ⋅ − ⋅ ⋅⎣ ⎦

 (21) 

 
2
1

( )( )
( )

( ) ( ) ( ) (1 ( )) ( )
2

iq
iq

m p plant qj i

E km k c
m k

c y k y k J m k S X i kμ

∂
Δ = − ⋅

∂

⎡ ⎤= ⋅ − ⋅ ⋅ ⋅ − ⋅⎣ ⎦

 (22) 

where c  is a learning parameter, and plantJ  represents the plant Jacobian estimated using 
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( )
( )

p
plant

NN

y k
J sign

u k
∂⎛ ⎞

= ⎜ ⎟⎜ ⎟∂⎝ ⎠
 (23) 

as in (Yasser et al., 2006 b). 

3.3 Stability 
For the stability analysis of our method, we start by defining its Lyapunov function and its 
derivation as follows 

 
( ) ( ) ( )
( ) ( ) ( )

SMCNN NN SMC

SMCNN NN SMC

V t V t V t
V t V t V t

= +

= +
 (24) 

where ( )NNV t  is the Lyapunov function of the NN of our method, and ( )SMCV t  is the 
Lyapunov function of SMC of our method. 
For ( )NNV t , we assume that it can be approximated as 

 ( )( ) NN
NN

V kV t
T

Δ
≅

Δ
 (25) 

where ( )NNV kΔ  is the derivation of a discrete-time Lyapunov function, and TΔ  is a 
sampling time. According to (Yasser et al., 2006 b), ( )NNV kΔ  can be guaranteed to be 
negative definite if the learning parameter c  satisfies the following conditions 

 20
q

c
n

< <  (26) 

for the weights between the hidden layer and the output layer, ( )qjm k , and 

 
220 max ( ) max ( )k qj k i

q
c m k i k

n
−

⎡ ⎤< < ⋅⎣ ⎦  (27) 

for the weights between the input layer and the hidden layer, ( )iqm k . Furthermore, if the 
conditions in (26) and (27) are satisfied, the negativity of ( )NNV t  can also be increased by 
reducing TΔ  in (25). 
For ( )SMCV t , it is defined as 

 

2 ( )
( )

2
( ) ( ) ( ).

p

p p

y
SMC

SMC y y

S t
V t

V t S t S t

=

=
 (28) 

Then we the following assumption. 
Assumption 1: The sliding surface in (13) can approximate the sliding surface in (3) (Yasser 
et al., 2006 c) 

 ( ) ( )
p py xS t S t≅ . (29) 

( )SMCV t  in (28) can be assured to be negative definite if 



Sliding Mode Control Using Neural Networks 

 

515 

 
( ) ( )

( )
p p

p p

y x

y y

S t S t

k S t

≅

′= −
. (30) 

where 
pyk′  is a positive constant. Following the stability analysis method in (Phuah et al., 

2005 a), we apply (1)—(3), (7), (14), (15), (29) and (30) to (28) and assume that (15) can 
approximate (4). Thus, ( )SMCV t  can be described as 

 

( ) ( ) ( )

( ) ( )

ˆ( ) ( ) ( )

ˆ( ) ( ) ( ( )) ( )

ˆ( ) ( ) ( ( )) ( ) ( )

( ) ( )

p p

p p p

p p

p p p p

p p p p

p p p

p

SMC y x

T
y x x

T
y x p p

T T T
y x p x p x p p

T T T
y x p x p x p eq c

y y y

y

V t S t S t

S t t

S t t t

S t t t B u t

S t t t B u t u t

S t k S t

k

=

=

⎡ ⎤= −⎣ ⎦
⎡ ⎤= − −⎣ ⎦
⎡ ⎤⎡ ⎤= − − +⎣ ⎦⎣ ⎦
⎡ ⎤= −⎣ ⎦

= −

c e

c x x

c x c f x c

c x c f x c

2 ( )
pyS t

. (31) 

which is negative definite, where 
p p p

T
y x p yk B k= c . The reaching condition (Phuah et al., 2005 

a) can be achieved if 

 ( ) ( ( ))
p p py y yk S t sign S tη− ≤ . (32) 

where η  is a small positive constant. 

3.4 Simulation 
Let us consider an SISO nonlinear plant described by (Yasser et al., 2006 b) 

 
1 2

2 1 1

1 1

0
2 sin( ) 1

sin( )

p

p

x x
u

x x x
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and the parameters [ ]12 1
p

T
y =c  in (13), 20

pyk =  in (14), 0.1α =  in (15), 1in =  in(17), 
5qn =  in (18), 2μ =  in (19), 0.001c =  in (21) and (22), 1plantJ = +  in (21), and 0.01TΔ =  in 

(25) are all fixed. The switching speed for the corrective control of SMC is set to 0.02 
seconds. We assume a first-order reference model in (10) with parameters 10mA = − , 

10mB = − , and 1mC = . 
Fig. 1 and Fig. 2 show the outputs of the reference model ( )my t  and the plant output ( )py t  
using the conventional method of SMC with an NN and a sign function. These figures show 
that the plant output ( )py t  can follow the output of the reference model ( )my t  closely but 
not smoothly, as chattering occurs as seen in Fig. 2. 
Fig. 3 and Fig. 4 show the outputs of the reference model ( )my t  and the plant output ( )py t  
using our proposed method. It can be seen that the plant output ( )py t  can follow the output 
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of the reference model ( )my t  closely and smoothly, as chattering has been eliminated as 
seen in Fig. 4. 
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Fig. 1. ( )my t  and ( )py t  using SMC with NN and a sign function 
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Fig. 2. Magnified upper parts of the curves in Fig. 1 

4. Sliding mode control with a variable corrective control gain using Neural 
Networks 
The method in this subsection applies an NN to produce the gain of the corrective control of 
SMC. Furthermore, the output of the switching function the corrective control of SMC is 
applied for the learning and training of the NN. There is no equivalent control of SMC is 
used in this second method. 
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Fig. 3. ( )my t  and ( )py t  using SMC with NN and the simplified distance function 
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Fig. 4. Magnified upper parts of the curves in Fig. 3 

4.1 A variable corrective control gain using Neural Networks for chattering elimination 
Using NN to produce a variable gain for a corrective control gain of SMC, instead of using a 
fixed gain in the conventional SMC, can eliminate the chattering. The switching function of 
the corrective control is used in the sliding mode backpropagation algorithm to adjust the 
weight of the NN. This method of SMC does not use any equivalent control of (7) in its 
control law. For the SISO nonlinear plant with BIBO described in (1), the control input of 
SMC with a variable corrective control gain using NN is given as 

 ( ) ( )p cVu t u t=  (34) 
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 ( )( ) ( ) ( )
p pcV y V yu t k t sign S t=  (35) 

where ( )cVu t  is the corrective control with variable gain using NN, and ( )
py Vk t  is the 

variable gain produced by NN described as 

 
( )

( ) ( )
( )

V NNV

ZOH NNV

k t u t
f u k

α

α

=

=
 (36) 

where α  is a positive constant, ( )NNVu t  is a continuous-time output of the NN, ( )NNVu k  is 
a discrete-time output of the NN, ⋅  is an absolute function, and ( )ZOHf ⋅  is a zero-order 
hold function. 
As in subsection 3.2, we implement a sampler in front of the NN with an appropriate 
sampling period to obtain the discrete-time input of the NN, and a zero-order hold is 
implemented to transform the discrete-time output ( )NNVu k  of the NN back to the 
continuous-time output ( )NNVu t  of the NN. 
The input ( )i k  of the NN is given as in (16), and the dynamics of the NN are given as 

 ( ) ( ) ( )V q i V iq
i

h k i k m k=∑  (37) 

 
1

( ) ( )
( ( )) ( )

NNV V

V q Vqj
i

u k o k
S h k m k

=

=∑  (38) 

where ( )ii k  is the input to the i -th neuron in the input layer ( 1, , Vii n= ), ( )V qh k  is the 
input to the q -th neuron in the hidden layer ( 1, , Vqq n= ), ( )Vo k  is the input to the single 
neuron in the output layer, V in  and Vqn  are the number of neurons in the input layer and 
the hidden layer, respectively, ( )Viqm k  are the weights between the input layer and the 
hidden layer, ( )Vqjm k  are the weights between the hidden layer and the output layer, and 

1( )S ⋅  is a sigmoid function. The sigmoid function is chosen as in (19). 

4.2 Sliding mode backpropagation for Neural Networks training 
In the sliding mode backpropagation, the objective of the NN training is to minimize the 
error function ( )

pyE k  described in (20). The NN training is done by adapting ( )Viqm k  and 
( )Vqjm k  as follows 
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where c  is the learning parameter, and V plantJ  is described as 

 
( )
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( )
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p
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V plant y

NNV
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y k
J sign sign S k

u k

J sign S k

∂⎛ ⎞
= ⋅⎜ ⎟⎜ ⎟∂⎝ ⎠

= ⋅

 (41) 

where ( )
pyS k  is the time-sampled form of ( )

pyS t  in (13). 

4.3 Stability 
For the stability analysis of our method, we start by defining its Lyapunov function and its 
derivation as follows 

 
( ) ( ) ( )

( ) ( ) ( )
V V V

V V V

SMCNN NN SMC

SMCNN NN SMC

V t V t V t

V t V t V t

= +

= +
 (42) 

where ( )NNVV t  is the Lyapunov function of the NN of our method, and ( )SMCVV t  is the 
Lyapunov function of SMC of our method. 
For ( )

VNNV t , we assume that it can be approximated as 

 ( )( )
V

NNV
NN

V kV t
T

Δ
≅

Δ
 (43) 

where ( )NNVV kΔ  is the derivation of a discrete-time Lyapunov function, and TΔ  is a 
sampling time. According to (Yasser et al., 2006 b), ( )NNVV kΔ  can be guaranteed to be 
negative definite if the learning parameter c  satisfies the following conditions 

 20
Vq

c
n

< <  (44) 

for the weights between the hidden layer and the output layer, ( )Vqjm k , and 

 220 max ( ) max ( )k V qj k i
Vq

c m k i k
n

−
⎡ ⎤< < ⋅⎣ ⎦

 (45) 

for the weights between the input layer and the hidden layer, ( )Viqm k . Furthermore, if the 
conditions in (44) and (45) are satisfied, the negativity of ( )VNNV t  can also be increased by 
reducing TΔ  in (43). 
For ( )SMCVV t , it is defined as 
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Then we again use assumption 1. Thus, ( )
VSMCV t  in (46) can be assured to be negative 

definite if 



 Sliding Mode Control 

 

520 

 
( ) ( )

( )
p p

pV p

y x

y y

S t S t

k S t

≅

′= −
. (47) 

where 
pVyk′  is a positive constant. Based on the stability analysis method in subsection 3.3, 

we apply (1)—(3), (34), (35), (29) and (30) to (28). Thus, ( )SMCV t  can be described as 
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where ( ) ( )
pV p p

T
y x p y Vk t B k t= c . ( )SMCV t  in (48) is negative definite if ( )

py Vk t  produced by the 

NN is large enough. The reaching condition (Phuah et al., 2005 a) can be achieved if 

 ( )ˆ( ) ( ) ( ( )) ( ) ( ) ( ) ( ( ))
p p p pV p p p

T T
y x p x p y y y yS t t t k t S t sign S t sign S tη⎡ ⎤− − ≤⎣ ⎦c x c f x . (49) 

where η  is a small positive constant. 

4.4 Simulation 
Let us consider an SISO nonlinear plant described in (33) and the parameters [ ]9 1

p

T
y =c  

in (13), 1α =  in (36), 2V in =  in (37), 5qn =  in (38), 2μ =  in (19) and (40), 0.01c =  in (39) 
and (40), 1plantJ = +  in (41), and 0.01TΔ =  in (43) are all fixed. The switching speed for the 
corrective control of SMC is set to 0.02 seconds. We assume a first-order reference model in 
(10) with parameters 10mA = − , 10mB = − , and 1mC = . 
Fig. 5 and Fig. 6 show the outputs of the reference model ( )my t  and the plant output ( )py t  
using our proposed method. It can be seen that the plant output ( )py t  can follow the output 
of the reference model ( )my t  closely and smoothly, as chattering has been eliminated as 
seen in Fig. 6. 

5. Conclusion 
In this chapter, we proposed two new SMC strategies using NN for SISO nonlinear systems 
with BIBO has been proposed to deal with the problem of eliminating the chattering effect.  
In the first method, to eliminate the chattering effect, it applied a method using a simplified 
distance function. Furthermore, we also proposed the application of an NN using the 
backpropagation algorithm to construct the equivalent control input of SMC.  
The second method of this paper applied an NN to produce the gain of the corrective 
control of SMC. Furthermore, the output of the switching function the corrective control of 
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SMC was applied for the learning and training of the NN. There was no equivalent control 
of SMC used in this second method. The weights of the NN were adjusted using a sliding 
mode backpropagation algorithm, that was a backpropagation algorithm using the 
switching function of SMC for its plant sensitivity. Thus, this second method did not use the 
equivalent control law of SMC, instead it used a variable corrective control gain produced 
by the NN for the SMC.  
Brief stability analysis was carried out for the two methods, and the effectiveness of our 
control methods was confirmed through computer simulations. 
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Fig. 5. ( )my t  and ( )py t  using SMC with a variable corrective gain using NN 
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1. Introduction

This chapter includes contributions to the theory of on-line training of artificial neural
networks (ANN), considering the multilayer perceptrons (MLP) topology. By on-line training,
we mean that the learning process is conducted while the signal processing is being executed
by the system, i.e., the neural network continuously adjusts its free parameters from the
variations in the incident signal in real time (Haykin, 1999).
An artificial neural network is a massively parallel distributed processor made up of simple
processing units, which have a natural tendency to store experimental knowledge and make
it available for use (Haykin, 1999). These units (also called neurons) are non-linear adaptable
devices, although very simple in terms of computing power and memory. However, when
linked, they have enormous potential for nonlinear mappings. The learning algorithm is the
procedure used to do the learning process, whose function is to modify the synaptic weights
of the network in an orderly manner to achieve a desired goal of the project (Haykin, 1999).
Although initially used only in problems of pattern recognition and signal processing and
image, today, the ANN are used to solve various problems in several areas of human
knowledge.
An important feature of ANN is its ability to generalize, i.e., the ability of the network to
provide answers in relation to standards unknown or not presented during the training phase.
Among the factors that influence the generalization ability of ANN, we cite the network
topology and the type of algorithm used to train the network.
The network topology refers to the number of inputs, outputs, number of layers, number
of neurons per layer and activation function. From the work of Cybenko (1989), networks
with the MLP topology had widespread use, because they possessed the characteristic of
universal approximator of continuous functions. Basically, an MLP network is subdivided
into the following layers: input layer, intermediate or hidden layer(s) and output layer. The
operation of an MLP network is synchronous, i.e., given an input vector, it is propagated
to the output by multiplying by the weights of each layer, applying the activation function
(the model of each neuron of the network includes a non-linear activation function, being the
non-linearity differentiable at any point) and propagating this value to the next layer until the
output layer is reached.
Issues such as flexibility of the system to avoid biased solutions (under�tting) and, conversely,
limiting the complexity of network topology, thus avoiding the variability of solutions
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(over�tting), are inherent aspects to define the best topology for an MLP. This balance between
bias and variance is known in the literature as “the dilemma between bias and variance”
(German et al., 1992).
Several algorithms that seek to improve the generalization ability of MLP networks are
proposed in the literature (Reed, 1993). Some algorithms use construction techniques,
changing the network topology. That is, from a super-sized network already trained, methods
of pruning are applied in order to determine the best topology considering the best balance
between bias and variance. Other methods use restriction techniques of the weights values
of MLP networks without changing the original topology. However, it is not always possible
to measure the complexity of a problem, which makes the choice of network topology an
empirical process.
Regarding the type of algorithm used for training MLP networks, the formulation of the
backpropagation algorithm (BP) (Rumelhart et al., 1986) enabled the training of fedforward
neural networks (FNN). The algorithm is based on the BP learning rule for error correction
and can be viewed as a generalization of the least mean square algorithm (LMS) (Widrow &
Hoff, 1960), also known as delta rule.
However, because the BP algorithm presents a slow convergence, dependent on initial
conditions, and being able to stop the training process in regions of local minima where
the gradients are zero, other methods of training appeared to correct or minimize these
deficiencies, such as Momentum (Rumelhart et al., 1986), QuickProp (Fahlman, 1988), Rprop
(Riedmiller & Braun, 1993), setting the learning rate (Silva & Almeida, 1990; Tollenaere, 1990),
the conjugate gradient algorithm (Brent, 1991), the Levenberg-Marquardt algorithm (Hagan
& Menhaj, 1994; Parisi et al., 1996), the fast learning algorithm based on the gradient descent
in the space of neurons (Zhou & Si, 1998), the learning algorithm in real-time neural networks
with exponential rate of convergence (Zhao, 1996), and recently a generalization of the BP
algorithm, showing that the most common algorithms based on the BP algorithm are special
cases of the presented algorithm (Yu et al., 2002).
However, despite the previouslymentioned methods accelerating the convergence of network
training, they cannot avoid areas of local minima (Yu et al., 2002), i.e., regions where the
gradients are zero because the derivative of the activation function has a value of zero or
near zero, even if the difference between the desired output and actual output of the neuron
is different from zero.
Besides the problems mentioned above, it can be verified that the learning strategy of training
algorithms based on the principle of backpropagation is not protected against external
disturbances associated with excitation signals (Efe & Kaynak, 2000; 2001).
The high performance of variable structure system control (Itkis, 1976) in dealing with
uncertainties and imprecision have motivated the use of the sliding mode control (SMC)
(Utkin, 1978) in training ANN (Parma et al., 1998a). This approach was chosen for three
reasons: because it is a well established theory, it allows for the adjustment of parameters
(weights) of the network, and it allows an analytical study of the gains involved in training.
Thus, the problem of the training of MLP networks is treated and solved as a problem of
control, inheriting characteristics of robustness and convergence inherent in systems that use
SMC.
The results presented in Efe & Kaynak (2000), Efe et al. (2000) have shown that the
convergence properties of gradient-based training strategies widely used in ANN can be
improved by utilizing the SMC approach. However, the method presented indirectly uses
the Variable Structure Systems (VSS) theory. Some studies on the direct use of SMC strategy
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are also reported in the literature. In Sira-Ramirez & Colina-Morles (1995) the zero-level set
of the learning error variable in Adaline neural networks is regarded as a sliding surface in
the space of learning parameters. A sliding mode trajectory can then be induced, in finite
time, on such a desired sliding manifold. The proposed method was further extended in Yu
et al. (1998) by introducing adaptive uncertainty bound dynamics of signals. In Topalov et al.
(2003), Topalov & Kaynak (2003) the sliding mode strategy for the learning of analog Adaline
networks, proposed by Sira-Ramirez & Colina-Morles (1995), was extended to a more general
class of multilayer networks with a scalar output.
The first SMC learning algorithm for training multilayer perceptron (MLP) networks was
proposed by Parma et al. (1998a). Besides the speed up achieved with the proposed algorithm,
control theory is actually used to guide neural network learning as a system to be controlled.
It also differs from the algorithms in Sira-Ramirez & Colina-Morles (1995), Yu et al. (1998) and
Topalov et al. (2003), due to the use of separate sliding surfaces for each network layer. A
comprehensive review of VSS and SMC can be seen in Hung et al. (1993), and a survey about
the fusion of computationally intelligent methodologies and SMC can be found in Kaynak
et al. (2001).
Although the methodology used by Parma et al. (1998a) makes it possible to determine the
limits of parameters involved in the training of MLP networks, their complexity still makes it
necessary to use heuristic methods to determine the most appropriate gain to be used in order
to ensure the best network performance for a particular training.
In this chapter, an algorithm for on-line ANN training based on SMC is presented. The main
feature of this procedure is the adaptability of the gain (learning rate), determined iteratively
for every weight update, and obtained from only one sliding surface.
To evaluate the algorithm, simulations were performed considering two distinct applications:
function approximation and a neural-based stator flux observer of an induction motor
(IM). The network topology was defined according to the best possible response with the
fewest number of neurons in the hidden layer without compromising the ability of network
generalization. The network used in the simulations has only one hidden layer, differing in
the number of neurons in this layer and the number of inputs and outputs of the network,
which were chosen according to the application for the MLP.

2. The On-line adaptive MLP training algorithm

This section presents the algorithm with adaptive gain for on-line training MLP networks
with multiple outputs that operates in quasi-sliding modes. The term “quasi-sliding regime”
was introduced by Miloslavjevic (1985) to express the fact that the extension to the case of
discrete time under the usual time for the continuous existence of a sliding regime, does not
necessarily guarantee chattering around the sliding surface in the same way that it occurs in
continuous time systems. Moreover, in Sarpturk et al. (1987) it was shown that the condition
proposed by Miloslavjevic (1985) for the existence of a quasi-sliding mode could cause the
system to become unstable. Now, let us specify how the quasi-sliding mode and the reaching
condition are understood in this paper.

Definition 1. Let us define a quasi-sliding mode in the ε vicinity of a sliding hyperplane s(n) = 0 for
a motion of the system such that

|s(n)| ≤ ε (1)

where the positive constant ε is called the quasi-sliding-mode band width (Bartoszewicz, 1998).
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This definition is different from the one proposed in Gao et al. (1995) since it does not require
the system state to cross the sliding plane s(n) = 0 in each successive control step.
The convergence of the system state to the sliding surface can be analyzed considering the
convergence of the series

∞

∑
n=1

s(n). (2)

If the convergence of the series is guaranteed, then the system state will converge, at least
assimptotically, to the sliding surface s(n) = 0.
Consider Cauchy’s convergence principle (Kreyszig, 1993): The series s1 + s2 + · · ·+ sn
converges if and only if, for a given value ε ∈ �+, a value N can be found such that
| sn+1 + sn+2 + · · ·+ sn+p |< ε for all n > N e p = 1, 2, · · · . A series is absolutely convergent
if:

∞

∑
n=1

|s(n)| (3)

is convergent. To study the convergence of the series given by (3) the ratio test is used (Butkov,
1968). Thus, it holds that: ∣∣∣∣ s(n+ 1)

s(n)

∣∣∣∣ ≤ Q < 1. (4)

Definition 2. It is said that the system state converges to a quasi-sliding regime in the vicinity ε of a
sliding surface s(n) = 0 if the following condition is satisfied:

|s(n+ 1)| < |s(n)|. (5)

Remark: From Definition 2, crossing the plane s(n) = 0 is allowed but not required.

Theorem 1. Let s(n) : �2 → �, the sliding surface defined by s(n) = CX1(n) + X2(n), where
{C,X1(n)} ∈ �+ and X2(n) ∈ �. If X1(n) = E(n), being E(n) = 1

2 ∑mL
k=1 e

2
k(n) defined as the

instantaneous value of the total energy of the error of all the neurons of the output layer of an MLP,
where ek(n) = dk(n)− yk(n) is the error signal between the desired value and actual value at the
output of the neuron k of the network output at iteration n, mL is the number of neurons in the output

layer of the network, and X2(n) = X1(n)−X1(n−1)
T is defined as the variation of X1(n) in a sample

period of T, then, for the current state s(n) to converge to a vicinity ε of s(n) = 0, it is necessary and
sufficient that the network meet the following:

sign(s(n)) [C(X1(n+ 1)− X1(n)) + X2(n+ 1)− X2(n)] < 0 (6)

sign(s(n)) [C(X1(n+ 1) + X1(n)) + X2(n+ 1) + X2(n)] > 0, (7)

being sign(s(n)) =
{
+1, s(n) ≥ 0
−1, s(n) < 0

the sign function of s(n). ♦

Proof: Defining the absolute value of the sliding surface as follows

|s(n)| = sign(s(n))s(n), (8)

then, from (5) it holds that

|s(n+ 1)| < |s(n)| ⇒ sign(s(n+ 1))s(n+ 1) < sign(s(n))s(n).
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As sign(s(n))sign(s(n)) = 1, yields

sign(s(n))[sign(s(n))sign(s(n+ 1))s(n+ 1)− s(n)] < 0.

If sign(s(n+ 1)) = sign(s(n)), then sign(s(n))[s(n+ 1)− s(n)] < 0. Replacing the definition
of s(n) as given by Theorem 1 yields

sign(s(n)) [CX1(n+ 1) + X2(n+ 1)− (CX1(n) + X2(n))] < 0⇒ (6).

If sign(s(n + 1)) = −sign(s(n)), then sign(s(n))[−s(n + 1) − s(n)] < 0. Replacing the
definition of s(n) as given by Theorem 1 yields

sign(s(n)) [CX1(n+ 1) + X2(n+ 1) + CX1(n) + X2(n)] > 0⇒ (7).

To prove that the conditions of Theorem 1 are sufficient, two situations must be established:

• The sliding surface is not crossed during convergence. In this situation, it holds that

sign(s(n+ 1)) = sign(s(n)).

Considering s(n) = CX1(n) + X2(n) and s(n + 1) = CX1(n + 1) + X2(n + 1), one can
write (6) as

sign(s(n))[s(n+ 1)− s(n)] < 0⇒ sign(s(n+ 1))s(n+ 1) < sign(s(n))s(n),

and using (8) yields |s(n+ 1)| < |s(n)|. The validity of (7) for this situation is trivial, i.e.:
sign(s(n))[s(n+ 1) + s(n)] = |s(n+ 1)|+ |s(n)| ⇒ (7).

• The sliding surface is crossed during convergence. Now, for this situation it holds that

sign(s(n+ 1)) = −sign(s(n)).

Considering, again, s(n) = CX1(n) + X2(n) and s(n+ 1) = CX1(n+ 1) + X2(n+ 1), one
can write (7) as

sign(s(n))[s(n+ 1) + s(n)] > 0⇒ sign(s(n+ 1))s(n+ 1) < sign(s(n))s(n),

and using (8) yields |s(n+ 1)| < |s(n)|. The validity of (6) for this situation is trivial too,
i.e.:

sign(s(n))[s(n+ 1)− s(n)] = −|s(n+ 1)| − |s(n)| ⇒ (6).

�
From Theorem 1, it can be verified that (6) is responsible for the existence of a quasi-sliding
regime for s(n) = 0, while (7) ensures the convergence of the network state trajectories to a
vicinity of the sliding surface s(n) = 0. One can also observe that the reference term from
the sliding surface signal sign(s(n)) determines the external and internal limits of the range
of convergence for the following expressions:

C(X1(n+ 1)− X1(n)) + X2(n+ 1)− X2(n) (9)

C(X1(n+ 1) + X1(n)) + X2(n+ 1) + X2(n). (10)

To study the convergence of the sliding surface s(n) = CX1(n) + X2(n), the decomposition
of (9) and (10), with respect to a gain η, is necessary in order to obtain a set of equations for
these variables and, from the conditions defined by Theorem 1, to determine an interval in �
due to a gain η, that can guarantee the convergence of the proposed method.
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Theorem 2. Let s(n) : �2 → �, the sliding surface defined by s(n) = CX1(n) + X2(n), where
{C,X1(n)} ∈ �+ and X2(n) ∈ �. If X1(n), X2(n) and T are defined as in Theorem 1, then, for
the current state s(n) to converge to a vicinity ε of s(n) = 0, it is necessary and sufficient that the
network meets the following:

sign(s(n))
[
c1η2 + c2η − s(n) + CX1(n)

]
< 0 (11)

sign(s(n))
[
c1η2 + c2η + s(n) + CX1(n)

]
> 0, (12)

where {c1, c2} ∈ �. If the following restrictions are taken into account:

c1 > 0 (13)

c2 < 0 (14)

Δ = c22 − 4c1c3 > 0, (15)

being c3 =

{−s(n) + CX1(n), (in (11))
s(n) + CX1(n), (in (12))

then, the existence of a limited region for the gain η that

satisfies both conditions for convergence is guaranteed. ♦
Proof: Initially, consider that:

X1(n) =
1
2

mL

∑
k=1

(dk(n)− yk(n))
2 =

1
2

mL

∑
k=1

(d2k(n)− 2dk(n)yk(n) + y2k(n)), (16)

X1(n+ 1) =
1
2

mL

∑
k=1

(d2k(n+ 1)− 2dk(n+ 1)yk(n+ 1) + y2k(n+ 1)), (17)

X1(n− 1) =
1
2

mL

∑
k=1

(d2k(n− 1)− 2dk(n− 1)yk(n− 1) + y2k(n− 1)), (18)

X2(n+ 1) =
X1(n+ 1)− X1(n)

T
. (19)

From (16), (17), (18), (19) and considering the definition of X2(n) given by Theorem 1, one can
derive the terms of (9) taking into account that dk(n− 1) = dk(n) = dk(n+ 1) = dk. Thus, it
holds:

C(X1(n+ 1)− X1(n)) + X2(n+ 1)− X2(n) =

C(X1(n+ 1)− X1(n)) +
(
X1(n+ 1)− X1(n)

T

)
−

(
X1(n)− X1(n− 1)

T

)
=

1
T
[(TC+ 1)X1(n+ 1)− (TC+ 2)X1(n) + X1(n− 1)]

=
1
T

[
(TC+ 1)

1
2

mL

∑
k=1

(d2k − 2dkyk(n+ 1) + y2k(n+ 1))

−(TC+ 2)
1
2

mL

∑
k=1

(d2k − 2dkyk(n) + y2k(n)) +
1
2

mL

∑
k=1

(d2k − 2dkyk(n− 1) + y2k(n− 1))

]

=
1
T
1
2

mL

∑
k=1

[
TC(−2dkyk(n+ 1) + y2k(n+ 1) + 2dkyk(n)− y2k(n))− 2dkyk(n+ 1)

+y2k(n+ 1) + 4dkyk(n)− 2y2k(n)− 2dkyk(n− 1) + y2k(n− 1)
]
. (20)
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In the same way, it is possible to derive the terms of (10) taking into account the same
considerations used to derive (9). Thus:

C(X1(n+ 1) + X1(n)) + X2(n+ 1) + X2(n) =

C(X1(n+ 1) + X1(n)) +
(
X1(n+ 1)− X1(n)

T

)
+

(
X1(n)− X1(n− 1)

T

)
=

1
T
[(TC+ 1)X1(n+ 1) + TCX1(n)− X1(n− 1)]

=
1
T

[
(TC+ 1)

1
2

mL

∑
k=1

(d2k − 2dkyk(n+ 1) + y2k(n+ 1))

+TC
1
2

mL

∑
k=1

(d2k − 2dkyk(n) + y2k(n))−
1
2

mL

∑
k=1

(d2k − 2dkyk(n− 1) + y2k(n− 1))

]

=
1
T
1
2

mL

∑
k=1

[
TC(d2k − 2dkyk(n+ 1) + y2k(n+ 1) + d2k − 2dkyk(n) + y2k(n))

−2dkyk(n+ 1) + y2k(n+ 1)− 2dkyk(n− 1)− y2k(n− 1)
]
. (21)

From (20) and (21) one can identify the term yk(n+ 1) as the target variable from which it is
possible to obtain the gain η. Then, doing

yk(n+ 1) = yk(n) + cη, (22)

y2k(n+ 1) = y2k(n) + 2yk(n)cη + (cη)2, (23)

replacing (22), (23) in (20), (21), respectively, and considering ek(n) = dk − yk(n), yields:

1
T
1
2

mL

∑
k=1

[
(TC+ 1)c2η2 − 2(TC+ 1)cek(n)η

+2dkyk(n)− y2k(n)− 2dkyk(n− 1) + y2k(n− 1)
]

(24)

and

1
T
1
2

mL

∑
k=1

[
(TC+ 1)c2η2 − 2(TC+ 1)cek(n)η

+2TC(dk − yk(n))
2 − 2dkyk(n)

+y2k(n) + 2dkyk(n− 1)− y2k(n− 1)
]
. (25)

Finally, taking into account the result of X1(n)−X1(n− 1), one can obtain the conditions (11)
and (12) defined in the Theorem 2, with the coefficients given by:

c1 =
1
2

(
C+

1
T

)
c2

c2 = −
(
C+

1
T

) mL

∑
k=1

cek(n)
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c3 =

{−s(n) + CX1(n), (in (11))
s(n) + CX1(n), (in (12)).

(26)

To analyze the intervals of convergence limited by the conditions of (11) and (12) it is necessary
to determine the limits of these intervals. It can be verified that the intervals of convergence
are obtained from a parabola, the concavity of this parabola being determined by the value of
c1 (in this case, positive concavity, since c1 > 0).
The general form for the quadratic equation related to the convergence conditions can be
written as:

c1η2 + c2η + c3 (27)

where c3 is the independent term. Considering the value of Δ = c22 − 4c1c3 and taking into
account that c1 > 0, the roots of (27) are given by:

Δ = c22 − 4|c1|c3. (28)

According to (28), the value of Δ is related to the signal and the module of the sliding surface
s(n). From these considerations, one can proceed with the following analysis:

• If s(n) > 0:
(a) c1η2 + c2η− s(n) + CX1(n) < 0

(1) |s(n)| > CX1(n)⇒ c3 < 0.
Roots: Δ = c22 + 4|c1||c3| ⇒ Δ > c22. Considering Δ = c22ξ21, being ξ1 > 1, the roots
can be written as:

η = − c2
2c1

±
∣∣∣∣ c2ξ1
2c1

∣∣∣∣ (29)

(2) |s(n)| < CX1(n)⇒ c3 > 0
Roots: Δ = c22 − 4|c1||c3| ⇒ Δ < c22. There are two possible variations for Δ:

1a) 0 < Δ < c22: Considering Δ =
c22
ξ21
, the roots can be written as:

η = − c2
2c1

±
∣∣∣∣ c2
2c1ξ1

∣∣∣∣ (30)

2a) Δ ≤ 0: This condition is not considered because it does not meet the restriction
(15).

(b) c1η2 + c2η + s(n) + CX1(n) > 0 Roots: Δ = c22 − 4|c1||c3| ⇒ Δ < c22. There are two
possible variations for Δ:

1a) 0 < Δ < c22: Considering Δ =
c22
ξ22
, being ξ2 > ξ1, the roots can be written as:

η = − c2
2c1

±
∣∣∣∣ c2
2c1ξ2

∣∣∣∣ (31)

2a) Δ ≤ 0: This condition is not considered because it does not meet the restriction
(15).
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From (29), (30) and (31) the following relationship can be established:∣∣∣∣ c2
2c1ξ2

∣∣∣∣ < ∣∣∣∣ c2
2c1ξ1

∣∣∣∣ < ∣∣∣∣ c2ξ1
2c1

∣∣∣∣ . (32)

Considering (− c2
2c1 ) as the center point of convergence intervals and observing (32), a

diagram can be drawn identifying, in bold, the intervals of convergence for s(n) > 0 as
shown in Figure 1.

• If s(n) < 0:
(a) c1η2 + c2η− s(n) + CX1(n) > 0⇒ c1η2 + c2η + s(n) + CX1(n) > 0

Roots: Δ = c22 − 4|c1||c3| ⇒ Δ < c22. There are two possible variations for Δ:

1a) 0 < Δ < c22: Considering Δ =
c22
ξ22
, the roots can be written as:

η = − c2
2c1

±
∣∣∣∣ c2
2c1ξ2

∣∣∣∣ (33)

2a) Δ ≤ 0: This condition is not considered because it does not meet the restriction
(15).

(b) c1η2 + c2η + s(n) + CX1(n) < 0⇒ c1η2 + c2η − s(n) + CX1(n) < 0
(1) |s(n)| > CX1(n)⇒ c3 < 0.

Roots: Δ = c22 + 4|c1||c3| ⇒ Δ > c22. Considering Δ = c22ξ21, the roots can be written
as:

η = − c2
2c1

±
∣∣∣∣ c2ξ1
2c1

∣∣∣∣ (34)

(2) |s(n)| < CX1(n)⇒ c3 > 0
Roots: Δ = c22 − 4|c1||c3| ⇒ Δ < c22. There are two possible variations for Δ:

1a) 0 < Δ < c22: Considering Δ =
c22
ξ21
, the roots can be written as:

η = − c2
2c1

±
∣∣∣∣ c2
2c1ξ1

∣∣∣∣ (35)

2a) Δ ≤ 0: This condition is not considered because it does not meet the restriction
(15).

From (33), (34) and (35), it can be established the same relationship defined in (32) and,
therefore, the diagram can be drawn identifying, in bold, the intervals of convergence for
s(n) < 0, as shown in Figure 1. �
Remark: The Theorem 2 guarantees the existence of real intervals for the gain η to satisfy the
convergence conditions. However, the Theorem 2 does not guarantee, directly, the existence
of a positive interval for the gain η. Both for s(n) > 0 and s(n) < 0, it is assured that at least
one positive real root exists, which reinforces the existence of a positive interval for η. In (30),
(31), (33) and (35), the existence of positive real roots is conditioned by − c2

2c1 > 0. As c1 > 0,
the condition is: −c2 > 0 ⇒ c2 < 0, which can be easily verified from the application of the
methodology developed in a two-layer MLP.
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convergence

interval of

convergence

interval of

-| c2ξ1
2c1
| +| c2ξ1

2c1
|

−c2
2c1

+| c2
2c1ξ2

|-| c2
2c1ξ2

|

Fig. 1. Intervals of convergence for the algorithm with adaptive gain.

Once s(n) is related to the network topology used, to verify the existence of a positive interval
for the gain η, it is necessary to analyze the behavior of convergence conditions for the linear
perceptron, the nonlinear perceptron and the two-layer MLP network with linear output. The
choice of an MLP network topology was made in order to make the calculations involved in
determining the network response to a stimulus simpler, yet still effective.

2.1 Determination of η for the linear perceptron
Let the output, at discrete-time n, of a neuron perceptron with linear activation function be
given by:

y(n) =
m0

∑
j=1

wj(n)xj(n), (36)

where m0 is the number of inputs of the neuron. The analysis for the determination of the
intervals for the gain η is performed for each input pattern of the neuron.
The output of the neuron at time n+ 1 is given by:

y(n+ 1) = y(n) + Δy(n) = y(n) +
m0

∑
j=1

Δwj(n)xj(n). (37)

To calculate (37), it is necessary to determine Δwj(n), which represents the adjustment of the
weights of the perceptron at time n. An immediate expression can be obtained from the Delta
rule, which gives rise to the LMS algorithm or learning algorithm of gradient descent. Thus,
it yields:

Δwj(n) = −η
∂E(n)
∂wj(n)

= −η 2
1
2
(d(n)− y(n))(−1) ∂y(n)

∂wj(n)
= ηe(n)xj(n). (38)
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Once Δwj(n) is set, y(n+ 1) can then be calculate as follows:

y(n+ 1) = y(n) + e(n)
m0

∑
j=1

x2j (n)η = y(n) + cη. (39)

Therefore, using (39) and considering c = e(n)∑m0
j=1 x

2
j (n), the expressions for the coefficients

c1, c2 e c3 of (26) can be obtained:

c1 =
1
2

(
C+

1
T

)
c2 =

1
2

(
C+

1
T

)
e2(n)

⎛⎝ m0

∑
j=1

x2j (n)

⎞⎠2

c2 = −
(
C+

1
T

)
ce(n) = −

(
C+

1
T

)
e2(n)

m0

∑
j=1

x2j (n)

c3 =

{−s(n) + CX1(n), (in (11))
s(n) + CX1(n), (in (12)).

(40)

After determining the coefficients c1, c2 e c3, the Theorem 2 can be applied to determine the
intervals of convergence for the gain η.

2.2 Determination of η for the non-linear perceptron
The output characteristic of this type of neuron is given by:

y(n) = ϕ

⎛⎝ m0

∑
j=1

wj(n)xj(n)

⎞⎠ , (41)

where ϕ(·) is the neuron activation function, continuous and differentiable.
The approach used to determine the neuron output is an approximation of the activation
function through its decomposition into a Taylor series, instead of propagating the output
signal of the neuron using the inverse of activation function. This approach was
chosen because the first terms of the Taylor series provide a significant simplification and
mathematical cost reduction for the definition of the intervals of convergence, yet limit the
ability of approximating the function to regions close to the point of interest.
Let the output, at time n, of a neuron perceptron with non-linear activation function be given
by (41). The output of the neuron at time n+ 1 can be written as:

y(n+ 1) = y(n) + Δy(n) = y(n) + ϕ

⎛⎝ m0

∑
j=1

Δwj(n)xj(n)

⎞⎠ . (42)

Applying the decomposition of the first-order Taylor series in (42), yields:

y(n+ 1) = y(n) + ẏ(n)
m0

∑
j=1

Δwj(n)xj(n), (43)
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where
∣∣∣∑m0

j=1 Δwj(n)xj(n)
∣∣∣ ≤ ξ. Using (38) for the variation of weights at time n, it is possible

to define an interval for the gain η related to the first-order Taylor series:

η ≤ ξ∣∣∣e(n)∑m0
j=1 x

2
j (n)

∣∣∣ . (44)

It can be verified that (44) limits the interval of the gain η in accordance with the desired
accuracy (ξ) for the approximation of the activation function of the neuron. Rewriting (43) it
follows that:

y(n+ 1) = y(n) + ẏ(n)e(n)
m0

∑
j=1

x2j (n)η

= y(n) + cη. (45)

Therefore, using (45) and considering c = ẏ(n)e(n)∑m0
j=1 x

2
j (n), the expressions for the

coefficients c1, c2 e c3 of (26) can be obtained:

c1 =
1
2

(
C+

1
T

)
c2 =

1
2

(
C+

1
T

)
ẏ2(n)e2(n)

⎛⎝ m0

∑
j=1

x2j (n)

⎞⎠2

c2 = −
(
C+

1
T

)
ce(n) = −

(
C+

1
T

)
ẏ(n)e2(n)

m0

∑
j=1

x2j (n)

c3 =

{−s(n) + CX1(n), (in (11))
s(n) + CX1(n), (in (12)).

(46)

After determining the coefficients c1, c2 e c3, observing the limits imposed by the Taylor series
decomposition, the Theorem 2 can be applied to determine the intervals of convergence for
the gain η.

2.3 Determination of η for two-layer MLP network
Let the linear output of the k-th neuron of a two-layer MLP network related to an output
vector x(n) be:

y2k(n) =
m1+1

∑
j=1

w2kj(n)y1j(n) =
m1+1

∑
j=1

w2kj(n)ϕ

(
m0

∑
i=1

w1ji(n)xi(n)

)
.

Due to the existence of two layers, one must do the study of the interval of convergence for
the output layer and hidden layer separately. Thus, it follows:

• Output layer: Considering only the weights of the output layer as the parameters of
interest, the output k at time n of an MLP network with linear output is given by:

y2k(n) =
m1+1

∑
j=1

w2kj(n)y1j(n). (47)

Assuming that the adjustment of weights is performed initially only in the weights of the
output layer, (47) can be compared to (36) for the linear perceptron. In this case, the inputs
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of neuron k correspond to the output vector of neurons in the hidden layer (plus the bias
term) after the activation function, y1(n), and the weights, for the vector w2k(n). The
coefficients c1, c2 e c3 are obtained from the use of the equations for the linear neuron
by applying the analysis to the network with multiple outputs. Thus, the coefficients of the
quadratic equation associated with the convergence conditions are defined as:

c1 =
1
2

(
C+

1
T

) m2

∑
k=1

⎡⎢⎣e2k(n)
⎛⎝m1+1

∑
j=1

y12j (n)

⎞⎠2
⎤⎥⎦

c2 = −
(
C+

1
T

) m2

∑
k=1

⎛⎝e2k(n)
m1+1

∑
j=1

y12j (n)

⎞⎠
c3 =

{−s(n) + CX1(n), (in (11))
s(n) + CX1(n), (in (12)).

(48)

• Hidden layer: Now, we consider the adjustment of the weights of the hidden layer, W1(n).
For this, the weights of the output layer are kept constant. Therefore, the k-th neuron of
the MLP network with two layers with linear output is given by:

y2k(n) =
m1+1

∑
j=1

w2kj(n)ϕ

(
m0

∑
i=1

w1ji(n)xi(n)

)
. (49)

The output at time n+ 1 is given by:

y2k(n+ 1) = y2k(n) + Δy2k(n) = y2k(n) +
m1+1

∑
j=1

w2kj(n)ϕ

(
m0

∑
i=1

Δw1ji(n)xi(n)

)
. (50)

Applying in (50) the decomposition of the first order Taylor series, we obtain:

y2k(n+ 1) = y2k(n) + ẏ2k(n)
m1+1

∑
j=1

w2kj(n)
m0

∑
i=1

Δw1ji(n)xi(n), (51)

where
∣∣∣∑m0

i=1 Δw1ji(n)xi(n)
∣∣∣ ≤ ξ. It is possible to use (38) for the variation of weights at

time n. However, for the hidden layer, there is not a desired response specified for the
neurons in this layer. Consequently, an error signal for a hidden neuron is determined
recursively in terms of the error signals of all neurons for which the hidden neuron is
directly connected, i. e., Δw1ji(n) = η ∑m2

k=1 ek(n)w2kj(n)xi(n). From the expression of
Δw1ji(n) it is possible to define an interval for the gain η of the Taylor series decomposition:

η ≤ ξ∣∣∣∑m2
k=1 ek(n)w2kj(n)∑m0

i=1 x
2
i (n)

∣∣∣ . (52)

Although (52) is assigned to a single neuron, the limit for the gain η must be defined in
terms of the whole network, choosing the lower limit associatedwith a network of neurons.
Decomposing (51) yields:

y2k(n+ 1) = y2k(n) + ẏ2k(n)
m1+1

∑
j=1

m2

∑
k=1

ek(n)w2
2
kj(n)

m0

∑
i=1

x2i (n)η, (53)
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Therefore, using (53) and considering c = ẏ2k(n)∑m1+1
j=1 ∑m2

k=1 ek(n)w2
2
kj(n)∑m0

i=1 x
2
i (n), the

coefficients c1, c2 e c3 can be obtained as follows:

c1 =
1
2

(
C+

1
T

) m2

∑
k=1

⎡⎣ẏ22k(n) m1+1

∑
j=1

m2

∑
k=1

e2k(n)
(
w22kj(n)

)2 (m0

∑
i=1

x2i (n)

)2
⎤⎦

c2 = −
(
C+

1
T

) m2

∑
k=1

⎛⎝ẏ22k(n)
m1+1

∑
j=1

m2

∑
k=1

e2k(n)w2
2
kj(n)

m0

∑
i=1

x2i (n)

⎞⎠
c3 =

{−s(n) + CX1(n), (in (11))
s(n) + CX1(n), (in (12)).

(54)

Thus, from the coefficients obtained in (48) and (54), the Theorem 2 can be apply, with the final
interval for the gain η determined by the intersection of the intervals defined by convergence
equations obtained for the hidden layer and the output layer, observing the limit imposed by
the Taylor series decomposition. It should be noted also that, in (48) and (54), the coefficients
c1, c2 e c3 are dependent on C e T. This implies that, for the determination of C, the sampling
period should be taken into account.

3. Simulation results

This section shows the results obtained from simulations of the algorithm presented in Section
2. The simulations are performed considering two distinct applications. In Section 3.1 the
proposed algorithm is used in the approximation of a sine function. Then, in Section 3.2, the
proposed algorithm is used for observation of the stator flux of the induction motor.

3.1 On-line function approximation
This section presents the simulation results of applying the proposed algorithm for the
learning real-time function f (t) = e(− 1

3 )sin(3t). The following parameters were considered
for the simulations: integration step = 10μs; simulation time = 2s; sampling period = 250μs.
The same simulationswere also performed considering the standard BP algorithm (Rumelhart
et al., 1986), the algorithm proposed by Topalov et al. (2003), and two algorithms for real-time
training provided by (Parma et al., 1999a;b). For these algorithms, the training gains (learning
rates) were chosen in order to obtain the best result, using the same initial conditions for each
of the algorithms simulated.
The network topology used in the simulation of the algorithms was as follows: an input,
5 neurons in the hidden layer and one neuron in the output. The size of the hidden layer
of the MLP was defined according to the best possible response with the fewest number of
neurons. The hyperbolic tangent function was used as the activation function for the hidden
layer neurons. This same function was also used as the activation function for the neuron of
the output layer in the standard BP algorithm and on the two algorithms proposed by (Parma
et al., 1999a;b). For the algorithm presented in this paper and that proposed by Topalov et al.
(2003), the linear output for the neuron of the output layer was used.
The simulation results of the proposed algorithm are shown in Figure 2. For the confidence
interval, ξ = 1.5 was used to approximate the hyperbolic tangent function using the first-order
Taylor series.
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Fig. 2. Simulation results of the approximation of f (t) using the presented algorithm: (a)
output f (t) x ANN(t); (b) error between output f (t) and ANN output; (c) behavior of s(n);
(d) adaptive gain.

In the simulation, the value of 10,000 was adopted for the parameter C. The function f (t)
is shown dashed while the output of ANN is shown in continuous line. The graph of the
approximation error for the sine function considered, the behavior of the sliding surface s(n),
and the training gains obtained from the proposed algorithm during the simulation time are
also presented.
The fact that the proposed algorithm uses the gradient of error function with respect to
weights, causes oscillations in the learning process, implying the need for high gains for the
network training. These oscillations are also felt in the behavior of the sliding surface, as can
be seen in the graph (c) of Figure 2.
Figure 3 shows the simulation results of the algorithms proposed by Parma et al. (1999a;b)
and Topalov et al. (2003).
The coefficients and the gains of the algorithms were adjusted by obtaining the following
values: 1st Parma algorithm - C1=C2=10000, η1=3000, η2=10; 2nd Parma algorithm -
C1=C2=10000, η1=200, η2=100; Topalov algorithm - η=10. These three algorithms presented
similar results, especially considering the time needed to reach the sine function, which is
much smaller compared with the algorithm proposed in this paper. The proposed algorithm
uses a gain adjustment which penalizes the reach time of the function f (t). On the other
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Fig. 3. Simulation results of the approximation of f (t) using the proposed Parma and
Topalov: graphs (a) and (b): - 1st Parma algorithm; graphs (c) e (d) - 2nd Parma algorithm;
gráficos (e) e (f) - Topalov algorithm.

hand, if the errors of function approximation are compared, the proposed algorithm has better
performance.
Finally, Figure 4 shows the results obtained using the standard BP algorithm. The adjusted
values of gain for the hidden and output layers were, respectively, η1=102 e η2=12.
As can be easily verified, the standard algorithmBP had the highest error in the approximation
of the considered function. This performance was expected for the various reasons outlined
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Fig. 4. Simulation results of the approximation of f (t) using the standard BP algorithm: (a)
output f (t) x ANN(t); (b) error between output f (t) and ANN output.

above. The results of this algorithm were presented as a reference, since this algorithm is the
oldest of the simulated algorithms.

3.2 Induction motor stator flux neural Observer
Considering the IM drives, the correct estimation of the flux, either the stator, rotor and
mutual, is the key to the successful implementation of any vector control strategy (Holtz &
Quan, 2003).
The observation, in turn, is a closed loop estimation, which employs, in addition to the input
signals, a feedback signal, obtained from the system output signals and the process model.
An important requirement for using an ANN for observing the motor flux, is that training
should be done on-line. This approach allows a continuous adjustment of the networkweights
according to the requirements of the system in which the network operates, in this case, the
IM. Figure 5 presents the simulation results of applying the proposed algorithm for training a
neural network used as an IM stator flux observer. The following variables were considered:
stator flux module (stator flux IM versus neural flux observer), electromagnetic torque and
motor speed. The IM was submitted to the following transients: 1) start up and speed
reversion with no load; 2) loading and unloading (constant torque) the motor at constant
speed.
The IM flux can be estimated directly from the voltage equation given by (Novotny & Lipo,
1996):

vs = Rsis +
dλs

dt
⇒ (55)

λs =
∫
(vs − Rsis)dt. (56)

The main reason for use of (56) is simplicity. The stator flux estimator is independent of
the speed measurement if the stationary reference is adopted for the d-q axes (Kovács &
Rácz, 1984). This fact makes the approach attractive for use in motor control without speed
measurement. Moreover, one can see that the only parametric dependence is the stator
resistance, which can be obtained with reasonable accuracy (Novotny & Lipo, 1996). Efficient
solutions for the correction of off-set in the integrals of current and voltage can be verified in
Holtz & Quan (2003).
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Fig. 5. Simulation results from neural observer: (a) speed reversal with no load in t=2s; (b)
loading and unloading (constant torque) the motor at constant speed of 150 ele.rad/s in
t=1.5s and t=3.5s, respectively.

Rewriting (56) considering d-q axes, it follows that:

vsd = Rsisd +
dλsd
dt

(57)

vsq = Rsisq +
dλsq

dt
, (58)

where Rs is the stator resistance; vsd and vsq are the d-q components of the stator voltage, isd
and isq are the d-q components of the stator current, λsd and λsq are the d-q components of the
stator flux, all of them in stator coordinates.
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Thus, the d-q components of stator current are used as input of the ANN, and the d-q
components of stator flux are the output of the network. The ANN used is the MLP 2-5-2, i.e.,
2 inputs, 5 neurons in the hidden layer and 2 outputs. The number of neurons in the hidden
layer was determined by analyzing the simulation results, aiming to reduce the computational
cost without compromising the results generated by the network. Other studies using a
neutral observer can be seen in Nied et al. (2003a) and Nied et al. (2003b).
The IM was submitted to the transients of start up and speed reversion with no load (Figure
5 (a)) and loading-unloading (constant torque) the motor at constant speed (Figure 5 (b)).
Both transients are done under the motor speed condition of 150 elec.rad/s. The simulation
time was 5 s. A good dynamic performance of the neural observer can be verified since the
estimated stator flux tracks the stator reference flux, even during the transients applied to the
motor.

4. Conclusion

Using the theory of sliding modes control, the problem of training MLP networks allows
the analysis of the network as a system to be controlled, where the control variables are the
weights, and the output of the network should follow the reference variable. From this, a
methodology was used that allows us to obtain an adaptive gain, determined iteratively at
each step of updating the weights, eliminating the need for using heuristics to determine the
gain of the network. This methodology was used for on-line training of MLP networks with a
linear activation function in the output layer.
The training of the ANN in real time requires a learning process to be performed while the
signal processing is being executed by the system, resulting in the continual adjustment of
free parameters of the neural network to variations in the incident signal in real time.
From the methodology, an algorithm was developed for on-line training of two-layer MLP
networks with linear output. The algorithm presented is general, providing that there are one
or more neurons in the output layer of the network.
Regarding the update of network weights, the algorithm updates the weights using the
gradient of the error function with respect to the weights (BP algorithm). This weight
correction law, despite being widely used for training MLP networks, has its weaknesses,
such as the fact that the stability (not asymptotic stability) can only be guaranteed for a set
of weights that corresponds to the overll minimum BP algorithm, according to Lyapunov
stability theory.
By using the algorithm presented, it is possible to determine a resulting range for the gain η of
the network, which is obtained through the intersection of the ranges defined for the hidden
layer and output, noting the limit imposed by the Taylor series decomposition. However,
the algorithm does not define the final value for the gain η. Thus, it is possible in principle,
that any value within a range of positive results be used. Issues are not addressed by the
optimization algorithm. However, bearing in mind the necessity of obtaining practical results
from the application of the algorithm,we adopted a conservative solution using the gain value
η obtained for the limit imposed by the Taylor series decomposition.
Due to the nature of the algorithm, applications that required adjustment of free parameters
of the neural network in real time were selected for evaluation.
As a first application, the algorithm was used in the approximation of a sine function. The
error of the approximation algorithm presented was the lowest compared with the values of
the approximation error made by the other three algorithms simulated.
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The other application was related to the use of the algorithm as an observer of the neural
stator flux of IM. The results obtained show that the neural observer contributed to the good
performance of the variables of flux, speed and torque.
From the simulation results of the algorithm, at least two features of this algorithm can be
identify: 1) ease of use, since there is no necessity of determining the gain (or learning rate),
which is obtained iteratively by the algorithm, 2) eliminates the need for any information
regarding the mathematical model of the system in which the network operates.
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